The trace inverse functions Tr(λx^(-1)) over the finite field F_(2~n) are a class of very important Boolean functions and are used in many stream ciphers such as SFINKS,RAKAPOSHI,the simple counter stream cipher(SCSC...The trace inverse functions Tr(λx^(-1)) over the finite field F_(2~n) are a class of very important Boolean functions and are used in many stream ciphers such as SFINKS,RAKAPOSHI,the simple counter stream cipher(SCSC) presented by Si W and Ding C(2012),etc.In order to evaluate the security of those ciphers in resistance to(fast) algebraic attacks,the authors need to characterize algebraic properties of Tr(λx^(-1)).However,currently only some bounds on algebraic immunity of Tr(λx^(-1)) are given in the public literature,for example,the NGG upper bound and the Bayev lower bound,etc.This paper gives the exact value of the algebraic immunity of Tr(λx^(-1)) over F_(2~n),that is,AI(Tr(λx^(-1))) =[2n^(1/2)]- 2,where n ≥ 2,A ∈ F_(2~n) and λ≠ 0,which shows that Dalai's conjecture on the algebraic immunity of Tr(λx^(-1)) is correct.What is more,the authors demonstrate some weak properties of Tr(λx^(-1)) against fast algebraic attacks.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61572491the 973 Program under Grant No.2011CB302401the open project of the SKLOIS in Institute of Information Engineering,Chinese Academy of Sciences under Grant No.2015-MS-03
文摘The trace inverse functions Tr(λx^(-1)) over the finite field F_(2~n) are a class of very important Boolean functions and are used in many stream ciphers such as SFINKS,RAKAPOSHI,the simple counter stream cipher(SCSC) presented by Si W and Ding C(2012),etc.In order to evaluate the security of those ciphers in resistance to(fast) algebraic attacks,the authors need to characterize algebraic properties of Tr(λx^(-1)).However,currently only some bounds on algebraic immunity of Tr(λx^(-1)) are given in the public literature,for example,the NGG upper bound and the Bayev lower bound,etc.This paper gives the exact value of the algebraic immunity of Tr(λx^(-1)) over F_(2~n),that is,AI(Tr(λx^(-1))) =[2n^(1/2)]- 2,where n ≥ 2,A ∈ F_(2~n) and λ≠ 0,which shows that Dalai's conjecture on the algebraic immunity of Tr(λx^(-1)) is correct.What is more,the authors demonstrate some weak properties of Tr(λx^(-1)) against fast algebraic attacks.