期刊文献+
共找到102篇文章
< 1 2 6 >
每页显示 20 50 100
Performance of Continuous Wavelet Transform over Fourier Transform in Features Resolutions
1
作者 Michael K. Appiah Sylvester K. Danuor Alfred K. Bienibuor 《International Journal of Geosciences》 CAS 2024年第2期87-105,共19页
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d... This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification. 展开更多
关键词 continuous wavelet transform (CWT) fast Fourier transform (FFT) Reservoir Characterization Tano Basin Seismic Data Spectral Decomposition
下载PDF
Comparison of fast discrete wavelet transform algorithms
2
作者 孟书苹 《Journal of Chongqing University》 CAS 2005年第2期84-89,共6页
This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, ... This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, FFT-based algorithm, Short- length based algorithm and Lifting algorithm. The principles, structures and computational complexity of these algorithms are explored in details respectively. The results of the experiments for comparison are consistent to those simulated by MATLAB. It is found that there are limitations in the implementation of DWT. Some algorithms are workable only for special wavelet transform, lacking in generality. Above all, the speed of wavelet transform, as the governing element to the speed of image processing, is in fact the retarding factor for real-time image processing. 展开更多
关键词 discrete wavelet transforms (DWT) fast algorithms computational complexity
下载PDF
PARAMETERS OPTIMIZATION OF CONTINUOUS WAVELET TRANSFORM AND ITS APPLICATION IN ACOUSTIC EMISSION SIGNAL ANALYSIS OF ROLLING BEARING 被引量:7
3
作者 ZHANG Xinming HE Yongyong HAO Rujiang CHU Fulei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期104-108,共5页
Morlet wavelet is suitable to extract the impulse components of mechanical fault signals. And thus its continuous wavelet transform (CWT) has been successfully used in the field of fault diagnosis. The principle of ... Morlet wavelet is suitable to extract the impulse components of mechanical fault signals. And thus its continuous wavelet transform (CWT) has been successfully used in the field of fault diagnosis. The principle of scale selection in CWT is discussed. Based on genetic algorithm, an optimization strategy for the waveform parameters of the mother wavelet is proposed with wavelet entropy as the optimization target. Based on the optimized waveform parameters, the wavelet scalogram is used to analyze the simulated acoustic emission (AE) signal and real AE signal of rolling bearing. The results indicate that the proposed method is useful and efficient to improve the quality of CWT. 展开更多
关键词 Rolling bearing Fault diagnosis Acoustic emission (AE) continuous wavelet transform (CWT) Genetic algorithm
下载PDF
CEEMD-FastICA-CWT联合瞬态响应阶次的电驱总成噪声源识别
4
作者 张威 景国玺 +2 位作者 武一民 杨征睿 高辉 《中国测试》 CAS 北大核心 2024年第4期144-152,共9页
以某增程式电驱动总成为研究对象,提出基于联合算法的噪声分离识别模型。首先,采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)联合快速独立分量分析(fast independent component analysis,FastI... 以某增程式电驱动总成为研究对象,提出基于联合算法的噪声分离识别模型。首先,采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)联合快速独立分量分析(fast independent component analysis,FastICA)方法提取纯电模式稳态工况下单一通道噪声信号特征,利用复Morlet小波变换及FFT对各分量信号时频特性进行识别。其次,采用阶次分析法和声能叠加法对稳态分量信号对应的各瞬态响应阶次能量进行对比分析,并结合皮尔逊积矩相关系数(Pearson product moment correlation coefficient,PPMCC)相似性识别确定不同噪声激励源贡献度。结果表明:减速齿副啮合噪声对该增程式电驱总成纯电模式运行噪声整体贡献度最大。 展开更多
关键词 电驱动总成 噪声源识别 互补集合经验模态分解 快速独立分量分析 连续小波变换 阶次分析
下载PDF
EWT-FastICA在内燃机振动信号识别中的应用 被引量:3
5
作者 史嘉伟 伍星 +1 位作者 刘韬 杨启超 《机械科学与技术》 CSCD 北大核心 2021年第5期741-748,共8页
内燃机广泛应用于工程、动力等领域,然而内燃机因燃烧和机械运动引起的冲击与振动导致其减振降噪一直是研究的热点,而如何准确识别振源则是减振的前提。本文针对振源盲分离时观测信号不少于源信号数目要求不易满足的问题,利用经验小波变... 内燃机广泛应用于工程、动力等领域,然而内燃机因燃烧和机械运动引起的冲击与振动导致其减振降噪一直是研究的热点,而如何准确识别振源则是减振的前提。本文针对振源盲分离时观测信号不少于源信号数目要求不易满足的问题,利用经验小波变换(Empirical wavelet transform,EWT)结合快速独立成分分析(Fast independent component analysis,FastICA)实现对内燃机振源信号的识别。首先使用时域同步平均法对内燃机缸盖的振动信号进行预处理,然后进行经验小波变换,之后再利用皮尔逊相关系数选择有效经验模态分量作为快速独立成分分析(FastICA)的输入,最终分离结果表明:该方法可以有效地从内燃机缸盖振动信号中识别出燃烧信号和气阀机构开启时的气体冲击信号。 展开更多
关键词 内燃机 时域同步平均 经验小波变换 快速独立成分分析 连续小波变换
下载PDF
Severity Recognition of Aloe vera Diseases Using AI in Tensor Flow Domain 被引量:5
6
作者 Nazeer Muhammad Rubab +3 位作者 Nargis Bibi Oh-Young Song Muhammad Attique Khan Sajid Ali Khan 《Computers, Materials & Continua》 SCIE EI 2021年第2期2199-2216,共18页
Agriculture plays an important role in the economy of all countries.However,plant diseases may badly affect the quality of food,production,and ultimately the economy.For plant disease detection and management,agricult... Agriculture plays an important role in the economy of all countries.However,plant diseases may badly affect the quality of food,production,and ultimately the economy.For plant disease detection and management,agriculturalists spend a huge amount of money.However,the manual detection method of plant diseases is complicated and time-consuming.Consequently,automated systems for plant disease detection using machine learning(ML)approaches are proposed.However,most of the existing ML techniques of plants diseases recognition are based on handcrafted features and they rarely deal with huge amount of input data.To address the issue,this article proposes a fully automated method for plant disease detection and recognition using deep neural networks.In the proposed method,AlexNet and VGG19 CNNs are considered as pre-trained architectures.It is capable to obtain the feature extraction of the given data with fine-tuning details.After convolutional neural network feature extraction,it selects the best subset of features through the correlation coefficient and feeds them to the number of classifiers including K-Nearest Neighbor,Support Vector Machine,Probabilistic Neural Network,Fuzzy logic,and Artificial Neural Network.The validation of the proposed method is carried out on a self-collected dataset generated through the augmentation step.The achieved average accuracy of our method is more than 96%and outperforms the recent techniques. 展开更多
关键词 Plants diseases wavelet transform fast algorithm deep learning feature extraction classification
下载PDF
Recognition of Milankovitch cycles in the stratigraphic record: application of the CWT and the FFT to well-log data 被引量:8
7
作者 YU Ji-feng SUI Feng-gui +2 位作者 LI Zeng-xue LIU Hua WANG Yu-lin 《Journal of China University of Mining and Technology》 EI 2008年第4期594-598,共5页
The authors applied a the combination of Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) methods to gamma ray well-log data from the Q3, G1 and D2 wells. This high-resolution stratigraphic study wa... The authors applied a the combination of Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) methods to gamma ray well-log data from the Q3, G1 and D2 wells. This high-resolution stratigraphic study was based on Milankovitch's orbital cycle theory. It was found that the CWT scale factors, ‘a,’ of 12, 24 and 60 match the ratios of the periodicities of precession, obliquity and eccentricity very well. Nine intervals of the Permo-carboniferous strata were recognized to have Milankovitch cycles in them. For example, section A of well Q3 has 29 precession cycles, 15 obliquity cycles and 7 short eccentricity cycles. The wavelengths are 2.7, 4.4 and 7.8 m for precession, obliquity and eccentricity, respectively. Important geological parameters such as the stratigraphic completeness and the accumulation rate were also estimated. These results provide basic information for further cyclostratigraphic correlation studies in the area. They are of great significance for the study of ancient and future climate change. 展开更多
关键词 Milankovitch cycle continuous wavelet transform (CWT) fast Fourier transform (FFT) well logs
下载PDF
Identification of faults through wavelet transform vis-a-vis fast Fourier transform of noisy vibration signals emanated from defective rolling element bearings 被引量:2
8
作者 Deepak PALIWAL Achintya CHOUDHURY T. GOVANDHAN 《Frontiers of Mechanical Engineering》 SCIE CSCD 2014年第2期130-141,共12页
Fault diagnosis of rolling element bearings requires efficient signal processing techniques. For this purpose, the performances of envelope detection with fast Fourier transform (FFT) and continuous wavelet transfo... Fault diagnosis of rolling element bearings requires efficient signal processing techniques. For this purpose, the performances of envelope detection with fast Fourier transform (FFT) and continuous wavelet transform (CWT) of vibration signals produced from a bearing with defects on inner race and rolling element, have been examined at low signal to noise ratio. Both simulated and experimental signals from identical bearings have been considered for the purpose of analysis. The bearings have been modeled as spring-mass-dashpot systems and the simulated signals have been obtained considering transfer functions for the bearing systems subjected to impulsive loads due to the defects. Frequency B spline wavelets have been applied for CWT and a discussion on wavelet selection has been presented for better effectiveness. Results show that use of CWT with the proposed wavelets overcomes the short coming of FFT while processing a noisy vibration signals for defect detection of bearings. 展开更多
关键词 Fault detection spline wavelet continuous wavelet transform fast Fourier transform
原文传递
Spectral Analysis and Validation of Parietal Signals for Different Arm Movements
9
作者 Umashankar Ganesan A.Vimala Juliet R.Amala Jenith Joshi 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2849-2863,共15页
Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique techniq... Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique technique to identify an ideal region of the human brain that generates signals responsible for muscular movements;perform statistical analysis to provide an absolute characterization of the signal and validate the obtained results using a prototype arm.This can enhance the practical implementation of these frequency extractions for future neuro-prosthetic applications and the characterization of neurological diseases like Parkinson’s disease(PD).To play out this handling method,electroencepha-logram(EEG)signals are gained while the subject is performing different wrist and elbow movements.Then,the frontal brain signals and just the parietal signals are separated from the obtained EEG signal by utilizing a band pass filter.Then,feature extraction is carried out using Fast Fourier Transform(FFT).Subse-quently,the extraction process is done by Daubechies(db4)and Haar wavelet(db1)in MATLAB and classified using the Levenberg-Marquardt Algorithm.The results of the frequency changes that occurred during various wrist move-ments in the parietal region are compared with the frequency changes that occurred in frontal EEG signals.This proposed algorithm also uses the deep learn-ing pattern analysis network to evaluate the matching sequence for each action that takes place.Maximum accuracy of 97.2%and maximum error range of 0.6684%are achieved during the analysis.Results of this research confirm that the Levenberg-Marquardt algorithm,along with the newly developed deep learn-ing hybrid PatternNet,provides a more accurate range of frequency changes than any other classifier used in previous works of literature.Based on the analysis,the peak-to-peak value is used to define the threshold for the prototype arm,which performs all the intended degrees of freedom(DOF),verifying the results.These results would aid the specialists in their decision-making by facilitating the ana-lysis and interpretation of brain signals in the field of neuroscience,specifically in tremor analysis in PD. 展开更多
关键词 Parietal EEG signals fast fourier transform Levenberg-Marquardt algorithm haar wavelet daubechies wavelet statistical analysis
下载PDF
非接触电导检测土壤养分离子的谱峰自动识别方法
10
作者 唐超礼 李浩 +5 位作者 王儒敬 王乐 黄青 王大朋 张家宝 陈翔宇 《智慧农业(中英文)》 CSCD 2024年第1期36-45,共10页
[目的/意义]电容耦合非接触式电导检测(Capacitively Coupled Contactless Conductivity Detection,C4D)在农业土壤养分离子检测方面发挥着重要作用。对C4D信号中离子特征峰的有效识别,有利于后续对离子特征峰的定性和定量分析,为加强... [目的/意义]电容耦合非接触式电导检测(Capacitively Coupled Contactless Conductivity Detection,C4D)在农业土壤养分离子检测方面发挥着重要作用。对C4D信号中离子特征峰的有效识别,有利于后续对离子特征峰的定性和定量分析,为加强农业土壤养分管理提供依据。然而,C4D信号的特征峰检测仍然存在无法自动精准识别、人工操作复杂、效率低等缺点。[方法]提出一种基于连续小波变换结合粒子群优化(Particle Swarm Optimization,PSO)和最大类间方差法(Otsu)的谱峰自动识别算法,旨在实现准确、高效、自动化的C4D信号峰识别。采用C4D检测样品溶液,得到离子谱图信号,对谱图信号进行连续小波变换,得到小波变换系数矩阵。通过搜索小波系数变换系数矩阵极值,识别出脊线和谷线。将小波系数矩阵转换为灰度图像,结合PSO和Otsu寻找最佳阈值,进一步对灰度图像的背景和目标分割,再结合原始谱图中的脊谷线识别谱图中的特征峰。[结果与讨论]测试含有41、61和102个峰的数据集,以受试者工作特性(Receiver Operating Characteristic,ROC)曲线和度量值作为评估峰值检测算法性能的准则。与其他方法相比,基于连续小波变换结合粒子群优化的最大类间方差法分割图像(Continuous Wavelet Transform C.ombined with Particle Swarm Optimization of Otsu to Segment Image,CWTSPSO)的谱峰自动识别算法的ROC曲线均保持在0.9以上,度量值分别为0.976、0.915和0.969。CWTSPSO能够有效检测出更多弱峰和重叠峰,同时检测出更少的假峰,有利于提升C4D信号的谱峰识别率和精准性。[结论]本研究提出的CWTSPSO能为非接触式电导检测农业土壤养分离子信号分析提供有力支持。 展开更多
关键词 非接触式电导检测 连续小波变换 粒子群优化算法 最大类间方差法 谱峰识别
下载PDF
脉冲相干激光测风FFT和fCWT融合算法的研究
11
作者 邓旭锋 冯振中 +5 位作者 汤磊 尹微 王云石 范琪 周鼎富 黄自力 《激光杂志》 CAS 北大核心 2024年第7期78-84,共7页
在脉冲相干激光雷达测风中,广泛使用的FFT算法运算简便快速,但测风的距离分辨率难以进一步提高,而连续小波变换(CWT)等时频分析方法具有时频精细分析能力,但计算实时性差,提出了一种结合FFT和快速连续小波变换(fCWT)优势的融合算法,算... 在脉冲相干激光雷达测风中,广泛使用的FFT算法运算简便快速,但测风的距离分辨率难以进一步提高,而连续小波变换(CWT)等时频分析方法具有时频精细分析能力,但计算实时性差,提出了一种结合FFT和快速连续小波变换(fCWT)优势的融合算法,算法继承了CWT精细分析能力,而运算速度显著加快。通过对融合算法以及CWT、FFT算法就雷达测风仿真数据及实测数据进行对比,融合算法及CWT和FFT算法绘制的风速曲线趋势一致,但具有更丰富细节,融合算法计算时间相比CWT算法减少了45%以上。此融合算法为提高脉冲相干激光测风雷达测风性能提供了一种新思路。 展开更多
关键词 激光测风 傅里叶变换 快速连续小波变换 线性拟合 大气分层模型
下载PDF
利用四阶样条小波快速计算信号的希尔伯特变换
12
作者 康会刚 余波 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第4期124-136,共13页
在有限区间内计算给定信号的希尔伯特变换是数据分析中的一个重要问题。在现存的最好算法中,该问题的计算复杂度为O(nlog n),其中n为信号长度。为了进一步提高计算速度,本文建立一种基于四阶样条小波计算信号的希尔伯特变换的快速算法,... 在有限区间内计算给定信号的希尔伯特变换是数据分析中的一个重要问题。在现存的最好算法中,该问题的计算复杂度为O(nlog n),其中n为信号长度。为了进一步提高计算速度,本文建立一种基于四阶样条小波计算信号的希尔伯特变换的快速算法,将计算复杂度从O(nlog n)降到O(n)。数值实验表明该算法在具有更快计算速度的同时,具有与现存最好算法可比较的计算精度。 展开更多
关键词 希尔伯特变换 样条小波 基数B-样条 快速算法 计算复杂度
下载PDF
高压电网接地电位差干扰信号滤波算法研究
13
作者 苏佳华 丁翼 +2 位作者 马剑勋 黄嘉宇 王立辉 《应用科技》 CAS 2024年第5期128-133,共6页
在电力高压站高压隔离开关动作时,产生的特快速暂态过电压(very fast transient overvoltage,VFTO)耦合到二次电缆传输信号中,会造成测量的不准确和设备的误动作。以提高继电保护抗干扰能力为目的,建立并分析“接地网-二次电缆-智能组... 在电力高压站高压隔离开关动作时,产生的特快速暂态过电压(very fast transient overvoltage,VFTO)耦合到二次电缆传输信号中,会造成测量的不准确和设备的误动作。以提高继电保护抗干扰能力为目的,建立并分析“接地网-二次电缆-智能组件”的耦合路径,根据电力系统理想采样点的信号特征,提出应对接地网电位差干扰的算法,采用启动元件和判定元件快速判断采样值是否为干扰信号,根据高压隔离开关动作引起的接地网电位差干扰信号幅值高、上升时间短和频带范围宽的暂态特性,采用小波变换作为滤波算法。仿真实验结果表明,此滤波算法能够有效地滤除隔离开关动作引起的接地网电位差干扰信号,均方根误差减少91.6%,信噪比提高138.5%,保证了继电保护数据测量的准确性,提高了电力系统继电保护的可靠性。 展开更多
关键词 高压站 继电保护 隔离开关动作 特快速暂态过电压 接地网电位差 耦合路径 小波变换 滤波算法
下载PDF
活塞-缸套摩擦副状态表征参数选取方法研究
14
作者 魏敬宏 纪少波 +3 位作者 胡珑渝 张珂 张志鹏 姜颖 《内燃机工程》 CAS CSCD 北大核心 2024年第2期75-84,共10页
建立柴油机试验台架采集数据,对机体表面振动信号进行时频分析,探明不同激励源与机体表面振动信号的关系。选取变分模态分解(variational mode decomposition,VMD)算法对振动信号进行分解,提取各分量的表征参数。通过探究转矩、转速、... 建立柴油机试验台架采集数据,对机体表面振动信号进行时频分析,探明不同激励源与机体表面振动信号的关系。选取变分模态分解(variational mode decomposition,VMD)算法对振动信号进行分解,提取各分量的表征参数。通过探究转矩、转速、润滑油温度及配缸间隙与各表征参数的相关性,初步确定相关性强的表征参数集。通过多评价准则对上述表征参数集进行分析,最终得出贡献度最高的表征参数为本征模态函数(intrinsic mode function,IMF)1的标准差、均方频率、峭度、最大奇异值、频域积分和IMF6的脉冲因子、标准差、重心频率、频率方差及最大奇异值。 展开更多
关键词 活塞–缸套 故障诊断 表征参数提取 连续小波变换 信号分解算法 多评价准则
下载PDF
基于ResNet多特征图融合的钻削表面粗糙度分类方法
15
作者 陈刚 彭望 +2 位作者 王闻宇 赵海军 程浩 《机电工程》 CAS 北大核心 2024年第9期1613-1627,共15页
传统五面复合数控(CNC)钻削表面粗糙度测量工作复杂,采用人工测量存在较大人为误差。传统多元回归、多项式拟合方法仅采用转速和进给速度参数,数据利用率低且噪声敏感性强;用传统机器学习方法无法有效提取信号的深层复杂特征。针对上述... 传统五面复合数控(CNC)钻削表面粗糙度测量工作复杂,采用人工测量存在较大人为误差。传统多元回归、多项式拟合方法仅采用转速和进给速度参数,数据利用率低且噪声敏感性强;用传统机器学习方法无法有效提取信号的深层复杂特征。针对上述问题,提出了一种基于ResNet模型、频谱图特征与时频图特征融合的钻削表面粗糙度分类预测方法。首先,根据CNC钻削加工理论和企业实际CNC钻削经验确定了CNC钻削加工实验的工艺参数变量;然后,基于SYNTEC CNC系统开发了多源数据采集系统,实时采集了钻削加工过程数据;接着,分析了三轴振动信号的频谱特征和时频特征,验证了振动信号跟表面粗糙度类别的关联性;随后,采用卡尔曼滤波对三轴振动信号进行了降噪处理,采用快速傅里叶变换(FFT)和连续小波变换(CWT)进行了振动信号频谱热图与时频图转换,采用矩阵拼接对三轴振动信号的单轴时频图进行了拼接融合,得到了三轴振动时频图;最后,对频谱热图和时频图进行了卷积运算融合频谱特征与时频特征,并进行了ResNet和其他网络模型如Densenet、Shufflenet和Mobilenet_v3_small等的对比实验。研究结果表明:相对上述其他网络模型,基于ResNet网络模型的表面粗糙度分类正确率提高了约9%,同时也验证了三轴时频特征融合以及频谱特征和时频特征融合方法的正确性。由于模型训练成本低、训练收敛速度快,该方法在轻量级、低成本的CNC机床钻削表面粗糙度预测分类中具有良好的工业应用前景。 展开更多
关键词 智能制造 数控机床 数据采集 SYNTEC数控系统 表面粗糙度分类 快速傅里叶变换 连续小波变换
下载PDF
湖滨绿洲土壤有机碳含量的支持向量机估算模型
16
作者 杨吉祥 李新国 《新疆农业科学》 CAS CSCD 北大核心 2024年第6期1477-1486,共10页
【目的】利用高光谱数据快速估算土壤有机碳含量,为干旱区湖滨绿洲合理开发土地资源提供科学依据。【方法】以新疆博斯腾湖北岸湖滨绿洲为研究区,将实测的土壤有机碳含量数据与高光谱数据相结合,对原始光谱进行SG平滑(SavitzkyGolay smo... 【目的】利用高光谱数据快速估算土壤有机碳含量,为干旱区湖滨绿洲合理开发土地资源提供科学依据。【方法】以新疆博斯腾湖北岸湖滨绿洲为研究区,将实测的土壤有机碳含量数据与高光谱数据相结合,对原始光谱进行SG平滑(SavitzkyGolay smoothing,SG)、连续统去除(Continuum Removal,CR)、连续小波变换(Continuous Wavelet Transform,CWT)预处理,采用连续投影算法(Successive Projections Algorithm,SPA)筛选特征波段;应用支持向量机(Support Vector Machines,SVM)模型估算土壤有机碳含量。【结果】(1)研究区土壤有机碳含量为0.69~50.32 g/kg,平均值为14.15 g/kg,标准差为9.51 g/kg,呈中等变异性,变异系数为67.20%。(2)土壤原始光谱反射率在350~750 nm,光谱反射率呈上升趋势,在750~2150 nm,光谱反射率呈相对平稳趋势,在2150~2500 nm,光谱反射率逐渐下降;连续小波变换对土壤原始光谱预处理后随着分解尺度的增加,光谱局部特征明显,吸收峰和反射峰越来越平滑;采用连续投影算法筛选的光谱特征波段集中于350~952 nm、1007~1742 nm、2082~2381 nm,且特征波段仅占可见光-近红外光谱波段的0.30%。(3)连续小波变换结合连续投影算法构建的SVM模型,其训练集和验证集分别R^(2)=0.76,RMSE=4.78和R^(2)=0.94,RMSE=3.30,RPD=2.50。【结论】CWT-SPA-SVM可有效估算研究区土壤有机碳含量。 展开更多
关键词 土壤有机碳含量 连续小波变换 连续投影算法 支持向量机模型 高光谱数据
下载PDF
基于优化VMD参数与VGG模型的轴承故障诊断
17
作者 刘迪洋 张清华 朱冠华 《机床与液压》 北大核心 2024年第18期195-202,共8页
轴承振动信号的采集过程中难免会受到噪声的影响,使得轴承部分故障特征难以提取。针对此问题,提出一种基于蜣螂算法(DBO)优化变分模态分解(VMD)并与VGG神经网络相结合的轴承故障诊断方法。使用DBO对VMD进行参数寻优,经过优化后的VMD将... 轴承振动信号的采集过程中难免会受到噪声的影响,使得轴承部分故障特征难以提取。针对此问题,提出一种基于蜣螂算法(DBO)优化变分模态分解(VMD)并与VGG神经网络相结合的轴承故障诊断方法。使用DBO对VMD进行参数寻优,经过优化后的VMD将原始振动信号分解为多个本征模态函数(IMF),通过皮尔逊相关系数选择合适的IMF对信号进行重构;对重构的信号进行连续小波变换(CWT)生成时频图;最后,通过VGG网络进行训练以完成对轴承的故障诊断分类识别。结果表明:与其他诊断方法相比,所提方法降噪效果明显,同时对轴承的故障识别准确率达到了100%。 展开更多
关键词 故障诊断 变分模态分解 蜣螂算法 卷积神经网络 连续小波变换
下载PDF
Fast Wavelet Transform for Toeplitz Matrices and Property Analysis
18
作者 Hong-xia Wang Li-zhi Cheng 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2005年第3期459-468,共10页
Fast wavelet transform algorithms for Toeplitz matrices are proposed in this paper. Distinctive from the well known discrete trigonometric transforms, such as the discrete cosine transform (DCT) and the discrete Fou... Fast wavelet transform algorithms for Toeplitz matrices are proposed in this paper. Distinctive from the well known discrete trigonometric transforms, such as the discrete cosine transform (DCT) and the discrete Fourier transform (DFT) for Toeplitz matrices, the new algorithms are achieved by compactly supported wavelet that preserve the character of a Toeplitz matrix after transform, which is quite useful in many applications involving a Toeplitz matrix. Results of numerical experiments show that the proposed method has good compression performance similar to using wavelet in the digital image coding. Since the proposed algorithms turn a dense Toeplitz matrix into a band-limited form, the arithmetic operations required by the new algorithms are O(N) that are reduced greatly compared with O(N log N) by the classical trigonometric transforms. 展开更多
关键词 wavelet transform Tocplitz matrix fast algorithm
原文传递
一种离散小波变换的快速分解和重构算法 被引量:22
19
作者 虞湘宾 董涛 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第4期564-568,共5页
通过对实序列的快速傅里叶变换算法的推导及Mallat算法原理的分析 ,根据离散小波变换 (DWT)算法结构特征 ,提出了一种离散小波变换的快速分解和重构算法 ;给出了相应的算法步骤 .从数学理论上对该算法进行了论证 ,结果表明与原有的快速... 通过对实序列的快速傅里叶变换算法的推导及Mallat算法原理的分析 ,根据离散小波变换 (DWT)算法结构特征 ,提出了一种离散小波变换的快速分解和重构算法 ;给出了相应的算法步骤 .从数学理论上对该算法进行了论证 ,结果表明与原有的快速小波算法 (Mallat算法 )相比 ,可显著减少信号与滤波器长度N较大 (大于 1 6)时小波变换的实乘次数 (分解仅为 ( 5log2 N + 7)N次 ,重构仅为 4N( 1 +log2 N)次 ) ,提高了运算速度 .且该算法有着良好的并行性 ,易于数字信号处理器 (DSP) 展开更多
关键词 离散小波变换 快速分解 重构算法 小波分析 快速傅里叶变换 MALLAT算法 塔式分解 信号处理
下载PDF
基于DSP的小波算法的实现 被引量:13
20
作者 严居斌 刘晓川 张斌 《四川大学学报(工程科学版)》 EI CAS CSCD 2002年第2期92-95,共4页
介绍了小波算法的原理及在DSP中的实现 ,对Mallat算法在应用中的问题进行了分析 ,并给出了解决方案。还介绍了TMS32 0C3X的并行乘 /累加指令、循环寻址、重复操作在小波算法中的应用。最后用DSP仿真器对小波算法进行仿真 ,仿真结果表明 。
关键词 小波变换 快速算法 数字信号处理器 DSP 信号分析 电力系统
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部