This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, ...This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, FFT-based algorithm, Short- length based algorithm and Lifting algorithm. The principles, structures and computational complexity of these algorithms are explored in details respectively. The results of the experiments for comparison are consistent to those simulated by MATLAB. It is found that there are limitations in the implementation of DWT. Some algorithms are workable only for special wavelet transform, lacking in generality. Above all, the speed of wavelet transform, as the governing element to the speed of image processing, is in fact the retarding factor for real-time image processing.展开更多
Morlet wavelet is suitable to extract the impulse components of mechanical fault signals. And thus its continuous wavelet transform (CWT) has been successfully used in the field of fault diagnosis. The principle of ...Morlet wavelet is suitable to extract the impulse components of mechanical fault signals. And thus its continuous wavelet transform (CWT) has been successfully used in the field of fault diagnosis. The principle of scale selection in CWT is discussed. Based on genetic algorithm, an optimization strategy for the waveform parameters of the mother wavelet is proposed with wavelet entropy as the optimization target. Based on the optimized waveform parameters, the wavelet scalogram is used to analyze the simulated acoustic emission (AE) signal and real AE signal of rolling bearing. The results indicate that the proposed method is useful and efficient to improve the quality of CWT.展开更多
Agriculture plays an important role in the economy of all countries.However,plant diseases may badly affect the quality of food,production,and ultimately the economy.For plant disease detection and management,agricult...Agriculture plays an important role in the economy of all countries.However,plant diseases may badly affect the quality of food,production,and ultimately the economy.For plant disease detection and management,agriculturalists spend a huge amount of money.However,the manual detection method of plant diseases is complicated and time-consuming.Consequently,automated systems for plant disease detection using machine learning(ML)approaches are proposed.However,most of the existing ML techniques of plants diseases recognition are based on handcrafted features and they rarely deal with huge amount of input data.To address the issue,this article proposes a fully automated method for plant disease detection and recognition using deep neural networks.In the proposed method,AlexNet and VGG19 CNNs are considered as pre-trained architectures.It is capable to obtain the feature extraction of the given data with fine-tuning details.After convolutional neural network feature extraction,it selects the best subset of features through the correlation coefficient and feeds them to the number of classifiers including K-Nearest Neighbor,Support Vector Machine,Probabilistic Neural Network,Fuzzy logic,and Artificial Neural Network.The validation of the proposed method is carried out on a self-collected dataset generated through the augmentation step.The achieved average accuracy of our method is more than 96%and outperforms the recent techniques.展开更多
The authors applied a the combination of Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) methods to gamma ray well-log data from the Q3, G1 and D2 wells. This high-resolution stratigraphic study wa...The authors applied a the combination of Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) methods to gamma ray well-log data from the Q3, G1 and D2 wells. This high-resolution stratigraphic study was based on Milankovitch's orbital cycle theory. It was found that the CWT scale factors, ‘a,’ of 12, 24 and 60 match the ratios of the periodicities of precession, obliquity and eccentricity very well. Nine intervals of the Permo-carboniferous strata were recognized to have Milankovitch cycles in them. For example, section A of well Q3 has 29 precession cycles, 15 obliquity cycles and 7 short eccentricity cycles. The wavelengths are 2.7, 4.4 and 7.8 m for precession, obliquity and eccentricity, respectively. Important geological parameters such as the stratigraphic completeness and the accumulation rate were also estimated. These results provide basic information for further cyclostratigraphic correlation studies in the area. They are of great significance for the study of ancient and future climate change.展开更多
Fault diagnosis of rolling element bearings requires efficient signal processing techniques. For this purpose, the performances of envelope detection with fast Fourier transform (FFT) and continuous wavelet transfo...Fault diagnosis of rolling element bearings requires efficient signal processing techniques. For this purpose, the performances of envelope detection with fast Fourier transform (FFT) and continuous wavelet transform (CWT) of vibration signals produced from a bearing with defects on inner race and rolling element, have been examined at low signal to noise ratio. Both simulated and experimental signals from identical bearings have been considered for the purpose of analysis. The bearings have been modeled as spring-mass-dashpot systems and the simulated signals have been obtained considering transfer functions for the bearing systems subjected to impulsive loads due to the defects. Frequency B spline wavelets have been applied for CWT and a discussion on wavelet selection has been presented for better effectiveness. Results show that use of CWT with the proposed wavelets overcomes the short coming of FFT while processing a noisy vibration signals for defect detection of bearings.展开更多
Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique techniq...Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique technique to identify an ideal region of the human brain that generates signals responsible for muscular movements;perform statistical analysis to provide an absolute characterization of the signal and validate the obtained results using a prototype arm.This can enhance the practical implementation of these frequency extractions for future neuro-prosthetic applications and the characterization of neurological diseases like Parkinson’s disease(PD).To play out this handling method,electroencepha-logram(EEG)signals are gained while the subject is performing different wrist and elbow movements.Then,the frontal brain signals and just the parietal signals are separated from the obtained EEG signal by utilizing a band pass filter.Then,feature extraction is carried out using Fast Fourier Transform(FFT).Subse-quently,the extraction process is done by Daubechies(db4)and Haar wavelet(db1)in MATLAB and classified using the Levenberg-Marquardt Algorithm.The results of the frequency changes that occurred during various wrist move-ments in the parietal region are compared with the frequency changes that occurred in frontal EEG signals.This proposed algorithm also uses the deep learn-ing pattern analysis network to evaluate the matching sequence for each action that takes place.Maximum accuracy of 97.2%and maximum error range of 0.6684%are achieved during the analysis.Results of this research confirm that the Levenberg-Marquardt algorithm,along with the newly developed deep learn-ing hybrid PatternNet,provides a more accurate range of frequency changes than any other classifier used in previous works of literature.Based on the analysis,the peak-to-peak value is used to define the threshold for the prototype arm,which performs all the intended degrees of freedom(DOF),verifying the results.These results would aid the specialists in their decision-making by facilitating the ana-lysis and interpretation of brain signals in the field of neuroscience,specifically in tremor analysis in PD.展开更多
在电力高压站高压隔离开关动作时,产生的特快速暂态过电压(very fast transient overvoltage,VFTO)耦合到二次电缆传输信号中,会造成测量的不准确和设备的误动作。以提高继电保护抗干扰能力为目的,建立并分析“接地网-二次电缆-智能组...在电力高压站高压隔离开关动作时,产生的特快速暂态过电压(very fast transient overvoltage,VFTO)耦合到二次电缆传输信号中,会造成测量的不准确和设备的误动作。以提高继电保护抗干扰能力为目的,建立并分析“接地网-二次电缆-智能组件”的耦合路径,根据电力系统理想采样点的信号特征,提出应对接地网电位差干扰的算法,采用启动元件和判定元件快速判断采样值是否为干扰信号,根据高压隔离开关动作引起的接地网电位差干扰信号幅值高、上升时间短和频带范围宽的暂态特性,采用小波变换作为滤波算法。仿真实验结果表明,此滤波算法能够有效地滤除隔离开关动作引起的接地网电位差干扰信号,均方根误差减少91.6%,信噪比提高138.5%,保证了继电保护数据测量的准确性,提高了电力系统继电保护的可靠性。展开更多
Fast wavelet transform algorithms for Toeplitz matrices are proposed in this paper. Distinctive from the well known discrete trigonometric transforms, such as the discrete cosine transform (DCT) and the discrete Fou...Fast wavelet transform algorithms for Toeplitz matrices are proposed in this paper. Distinctive from the well known discrete trigonometric transforms, such as the discrete cosine transform (DCT) and the discrete Fourier transform (DFT) for Toeplitz matrices, the new algorithms are achieved by compactly supported wavelet that preserve the character of a Toeplitz matrix after transform, which is quite useful in many applications involving a Toeplitz matrix. Results of numerical experiments show that the proposed method has good compression performance similar to using wavelet in the digital image coding. Since the proposed algorithms turn a dense Toeplitz matrix into a band-limited form, the arithmetic operations required by the new algorithms are O(N) that are reduced greatly compared with O(N log N) by the classical trigonometric transforms.展开更多
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
基金the Natural Science Foundation of China (No.60472037).
文摘This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, FFT-based algorithm, Short- length based algorithm and Lifting algorithm. The principles, structures and computational complexity of these algorithms are explored in details respectively. The results of the experiments for comparison are consistent to those simulated by MATLAB. It is found that there are limitations in the implementation of DWT. Some algorithms are workable only for special wavelet transform, lacking in generality. Above all, the speed of wavelet transform, as the governing element to the speed of image processing, is in fact the retarding factor for real-time image processing.
基金This project is supported by National Natural Science Foundation of China (No. 50105007)Program for New Century Excellent Talents in University, China.
文摘Morlet wavelet is suitable to extract the impulse components of mechanical fault signals. And thus its continuous wavelet transform (CWT) has been successfully used in the field of fault diagnosis. The principle of scale selection in CWT is discussed. Based on genetic algorithm, an optimization strategy for the waveform parameters of the mother wavelet is proposed with wavelet entropy as the optimization target. Based on the optimized waveform parameters, the wavelet scalogram is used to analyze the simulated acoustic emission (AE) signal and real AE signal of rolling bearing. The results indicate that the proposed method is useful and efficient to improve the quality of CWT.
基金the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2020-2016-0-00312)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)in part by the MSIP(Ministry of Science,ICT&Future Planning),Korea,under the National Program for Excellence in SW)(2015-0-00938)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation).
文摘Agriculture plays an important role in the economy of all countries.However,plant diseases may badly affect the quality of food,production,and ultimately the economy.For plant disease detection and management,agriculturalists spend a huge amount of money.However,the manual detection method of plant diseases is complicated and time-consuming.Consequently,automated systems for plant disease detection using machine learning(ML)approaches are proposed.However,most of the existing ML techniques of plants diseases recognition are based on handcrafted features and they rarely deal with huge amount of input data.To address the issue,this article proposes a fully automated method for plant disease detection and recognition using deep neural networks.In the proposed method,AlexNet and VGG19 CNNs are considered as pre-trained architectures.It is capable to obtain the feature extraction of the given data with fine-tuning details.After convolutional neural network feature extraction,it selects the best subset of features through the correlation coefficient and feeds them to the number of classifiers including K-Nearest Neighbor,Support Vector Machine,Probabilistic Neural Network,Fuzzy logic,and Artificial Neural Network.The validation of the proposed method is carried out on a self-collected dataset generated through the augmentation step.The achieved average accuracy of our method is more than 96%and outperforms the recent techniques.
基金supported by the Project Sponsored by the Scientific Research Foundation for the Re-turned Overseas Chinese Scholars, State Education Ministry (2006331) National Basic Research Program of China (2003CB214608)
文摘The authors applied a the combination of Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) methods to gamma ray well-log data from the Q3, G1 and D2 wells. This high-resolution stratigraphic study was based on Milankovitch's orbital cycle theory. It was found that the CWT scale factors, ‘a,’ of 12, 24 and 60 match the ratios of the periodicities of precession, obliquity and eccentricity very well. Nine intervals of the Permo-carboniferous strata were recognized to have Milankovitch cycles in them. For example, section A of well Q3 has 29 precession cycles, 15 obliquity cycles and 7 short eccentricity cycles. The wavelengths are 2.7, 4.4 and 7.8 m for precession, obliquity and eccentricity, respectively. Important geological parameters such as the stratigraphic completeness and the accumulation rate were also estimated. These results provide basic information for further cyclostratigraphic correlation studies in the area. They are of great significance for the study of ancient and future climate change.
文摘Fault diagnosis of rolling element bearings requires efficient signal processing techniques. For this purpose, the performances of envelope detection with fast Fourier transform (FFT) and continuous wavelet transform (CWT) of vibration signals produced from a bearing with defects on inner race and rolling element, have been examined at low signal to noise ratio. Both simulated and experimental signals from identical bearings have been considered for the purpose of analysis. The bearings have been modeled as spring-mass-dashpot systems and the simulated signals have been obtained considering transfer functions for the bearing systems subjected to impulsive loads due to the defects. Frequency B spline wavelets have been applied for CWT and a discussion on wavelet selection has been presented for better effectiveness. Results show that use of CWT with the proposed wavelets overcomes the short coming of FFT while processing a noisy vibration signals for defect detection of bearings.
文摘Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique technique to identify an ideal region of the human brain that generates signals responsible for muscular movements;perform statistical analysis to provide an absolute characterization of the signal and validate the obtained results using a prototype arm.This can enhance the practical implementation of these frequency extractions for future neuro-prosthetic applications and the characterization of neurological diseases like Parkinson’s disease(PD).To play out this handling method,electroencepha-logram(EEG)signals are gained while the subject is performing different wrist and elbow movements.Then,the frontal brain signals and just the parietal signals are separated from the obtained EEG signal by utilizing a band pass filter.Then,feature extraction is carried out using Fast Fourier Transform(FFT).Subse-quently,the extraction process is done by Daubechies(db4)and Haar wavelet(db1)in MATLAB and classified using the Levenberg-Marquardt Algorithm.The results of the frequency changes that occurred during various wrist move-ments in the parietal region are compared with the frequency changes that occurred in frontal EEG signals.This proposed algorithm also uses the deep learn-ing pattern analysis network to evaluate the matching sequence for each action that takes place.Maximum accuracy of 97.2%and maximum error range of 0.6684%are achieved during the analysis.Results of this research confirm that the Levenberg-Marquardt algorithm,along with the newly developed deep learn-ing hybrid PatternNet,provides a more accurate range of frequency changes than any other classifier used in previous works of literature.Based on the analysis,the peak-to-peak value is used to define the threshold for the prototype arm,which performs all the intended degrees of freedom(DOF),verifying the results.These results would aid the specialists in their decision-making by facilitating the ana-lysis and interpretation of brain signals in the field of neuroscience,specifically in tremor analysis in PD.
文摘在电力高压站高压隔离开关动作时,产生的特快速暂态过电压(very fast transient overvoltage,VFTO)耦合到二次电缆传输信号中,会造成测量的不准确和设备的误动作。以提高继电保护抗干扰能力为目的,建立并分析“接地网-二次电缆-智能组件”的耦合路径,根据电力系统理想采样点的信号特征,提出应对接地网电位差干扰的算法,采用启动元件和判定元件快速判断采样值是否为干扰信号,根据高压隔离开关动作引起的接地网电位差干扰信号幅值高、上升时间短和频带范围宽的暂态特性,采用小波变换作为滤波算法。仿真实验结果表明,此滤波算法能够有效地滤除隔离开关动作引起的接地网电位差干扰信号,均方根误差减少91.6%,信噪比提高138.5%,保证了继电保护数据测量的准确性,提高了电力系统继电保护的可靠性。
基金Supported by the National Natural Science Foundation under Grants (No.10171109)
文摘Fast wavelet transform algorithms for Toeplitz matrices are proposed in this paper. Distinctive from the well known discrete trigonometric transforms, such as the discrete cosine transform (DCT) and the discrete Fourier transform (DFT) for Toeplitz matrices, the new algorithms are achieved by compactly supported wavelet that preserve the character of a Toeplitz matrix after transform, which is quite useful in many applications involving a Toeplitz matrix. Results of numerical experiments show that the proposed method has good compression performance similar to using wavelet in the digital image coding. Since the proposed algorithms turn a dense Toeplitz matrix into a band-limited form, the arithmetic operations required by the new algorithms are O(N) that are reduced greatly compared with O(N log N) by the classical trigonometric transforms.