期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Effective inhibition of anomalous grain coarsening in cast AZ91 alloys during fast cooling via nanoparticle addition
1
作者 Haonan Li Kui Wang +3 位作者 Gaopeng Xu Haiyan Jiang Qudong Wang Yingxin Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4575-4588,共14页
In this work, the effects of Ti CN and γ-Al_(2)O_(3) nanoparticle(NP) addition on the microstructural evolution of cast AZ91 alloys at the cooling rate ranging from 15 to 120 K/s have been systematically investigated... In this work, the effects of Ti CN and γ-Al_(2)O_(3) nanoparticle(NP) addition on the microstructural evolution of cast AZ91 alloys at the cooling rate ranging from 15 to 120 K/s have been systematically investigated. Experimental results reveal that grain coarsening occurs in cast AZ91 alloys when the cooling rate exceeds 90 K/s, while it can be effectively inhibited upon addition of NPs. The marked inhibition effect may originate from the formation of Ti CN or γ-Al_(2)O_(3) NP-induced undercooling zone ahead of solid/liquid(S/L) front of α-Mg, which not only can restrict grain growth effectively, but also can reactivate the native nucleants that are inactive in AZ91 melts to participate in nucleation events. And if possessing high nucleation potency, NPs can also promote further nucleation events and lead to significant grain refinement. An analytical model has been established to quantitatively account for the restriction effect of NPs on grain growth. The present work may shed a new light on the grain coarsening of cast alloys during fast cooling and provide an effective approach to circumvent it. 展开更多
关键词 Grain coarsening Nanoparticles Undercooling zone fast cooling
下载PDF
Precipitation Behavior of Nb in Steel under Ultra Fast Cooling Conditions 被引量:2
2
作者 周晓光 WANG Meng +3 位作者 LIU Zhenyu YANG Hao WU Di WANG Guodong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期375-379,共5页
By measuring the expansion curves of a Nb bearing steel at different cooling rates by using Gleeble-3800 thermomechanical simulator, combining with metallographic analysis, different phase zones were determined. Also,... By measuring the expansion curves of a Nb bearing steel at different cooling rates by using Gleeble-3800 thermomechanical simulator, combining with metallographic analysis, different phase zones were determined. Also, precipitation behavior of Nb at different phase zones was investigated under ultra fast cooling conditions. The experimental results showed that adopting a proper deformation temperature, the ultra fast cooling process can restrain the precipitation of Nb at austenite phase zone. More quantities and smaller size precipitates of Nb can be found at the ferrite or bainite phase zone by controlling the ultra fast cooling ending temperature. With the increase of holding time at austenite, ferrite and bainite phase zones respectively, the volume fraction of precipitation, density, and average size of precipitates will increase obviously. With the decrease of early ultra fast cooling ending temperature, the density of Nb precipitates first increase(at ferrite phase zone) and then decrease(at bainite phase zone), the volume fraction of Nb precipitation decreases and precipitates can be refined. The optimal early ultra fast cooling ending temperature is located at ferrite phase zone. The combination of high rolling temperature with early ultra fast cooling technology opens the way for new cooling schedules and makes the production of high strength steels easier and cheaper by making full use of Nb precipitation strengthening effect. 展开更多
关键词 Nb bearing steel precipitation ultra fast cooling microstructure
下载PDF
New research developments on ultra fast cooling technologies and new generation TMCP
3
作者 WANG Guodong,WU Di,LIU Zhenyu and WANG Zhaodong The State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,China 《Baosteel Technical Research》 CAS 2010年第S1期36-,共1页
Since the 21^(st) century,great attention has been paid to ultra fast cooling(UFC) technology in the whole world.The industries and the research institutions began to carry out investigations on basic theories and ind... Since the 21^(st) century,great attention has been paid to ultra fast cooling(UFC) technology in the whole world.The industries and the research institutions began to carry out investigations on basic theories and industrial applications.Since 2003,the RAL of Northeastern University has made some progresses on microstructure control theories,understanding of strengthening mechanisms and their industrial applications.In this paper,these achievements since the last Baosteel BAC in 2008 will be reported on the industrialization of UFC, strengthening mechanism,development of new steel grades,and so on. 展开更多
关键词 ultra fast cooling new generation TMCP strengthening mechanism precipitation strengthening transformation strengthening
下载PDF
The development and application of ultra fast cooling in hot-rolled
4
作者 YE Xiaoyu,ZUO Jun and ZHANG Kaihua PanGang Group Research Institute Co.,Ltd.,Panzhihua,Chengdu 611731,Sichuan,China 《Baosteel Technical Research》 CAS 2010年第S1期36-,共1页
Ultra fast cooling is a new technology which used to control the hot-rolling strip cooling in recent years on the international developed.If suitably cooperated with a number of other new controlled rolling technologi... Ultra fast cooling is a new technology which used to control the hot-rolling strip cooling in recent years on the international developed.If suitably cooperated with a number of other new controlled rolling technologies,can achieve fast and accurate temperature control in the hot-rolled strip production process to obtain corresponding transformation microstructure and ideal mechanical properties.This article describes the technical principle and layout of ultra fast cooling in hot-rolled as well as application profiles in the major iron and steel enterprise in China and abroad.Carried out the layout of ultra fast cooling analysis on the adaptability of steel that install between the finishing mill and laminar cooling,on this basis,proposed the use of ultra fast cooling technology proposals. 展开更多
关键词 ultra fast cooling controlled rolling and controlled cooling adaptability analysis
下载PDF
Comparative Study of Tensile and Charpy Impact Properties of X70 and X80 Linepipe Steels After Ultra Fast Cooling Processing
5
作者 李壮 田勇 +1 位作者 SHAO Zhenyao WEI Zhanshan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期654-660,共7页
Ultra fast cooling(UFC) processing after hot deformation was conducted on X70 and X80 linepipe steels. Tensile and charpy impact properties of both steels have been investigated in this work. The results have shown ... Ultra fast cooling(UFC) processing after hot deformation was conducted on X70 and X80 linepipe steels. Tensile and charpy impact properties of both steels have been investigated in this work. The results have shown that the mechanical properties satisfy all the standard requirements of the X70 and X80 steels. UFC results in a presence of microstructure containing quasi polygonal(QF), acicular ferrite(AF) and granular bainite(GB). The alloying elements and UFC enhance the strengthening contribution caused by solid solution, dispersion, dislocation and precipitation strengthening. The size and distribution of precipitates in the linepipe steels are fine and dispersed. MA is also homogeneously dispersed due to UFC. Average grain size in the X80 steel is finer than that in the X70 steel. The volume fractions of secondary phases in the X80 steel are greater than those in the X70 steel. The X80 steel remains finer and more dispersed precipitates compared to the X70 steel. As a result, the tensile properties of X80 steel are higher than those of X70 steel. The Charpy absorbed energies of X70 and X80 steels at-10 ℃ reached 436 and 460 J, respectively. They reached 433 and 461 J at-15 ℃, respectively. This is mainly attributed to the presence of larger amounts of AFs in the X80 steel. A microstructure of AF for the X80 steel results in combining high strength and high toughness. 展开更多
关键词 linepipe steel ultra fast cooling(UFC) Charpy impact properties acicular ferrite(AF)
下载PDF
Upgrade Rolling Based on Ultra Fast Cooling Technology for C-Mn Steel 被引量:2
6
作者 Xiao-guang ZHOU Zhen-yu LIU +2 位作者 Sheng-yong SONG Di WU Guo-dong WANG 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2014年第1期86-90,共5页
By measuring the expansion curves of a C-Mn steel at different cooling rates by using an MMS-300 thermo- mechanical simulator, continuous cooling transformation curves were obtained. The new process "ultra fast cool... By measuring the expansion curves of a C-Mn steel at different cooling rates by using an MMS-300 thermo- mechanical simulator, continuous cooling transformation curves were obtained. The new process "ultra fast cooling+ laminar cooling" was simulated and the effects of ultra fast cooling ending temperature on microstructure had also been investigated. The hot rolling experiment was done by adopting "high temperature rolling-[-forepart ultra fast cooling" technologies at laboratory scale. The results revealed that ultra fast cooling can delay the decrease of disloca- tion density and refine ferrite grains. Diversity control of the microstructure and phase transformation strengthening can be realized by changing the ultra fast cooling ending temperature. With the decrease of ultra fast cooling ending temperature, the strength and toughness increase, but plasticity does not decrease obviously. The new technique can improve the yield strength by over 50 MPa. Therefore, the upgrade of mechanical properties of C-Mn steel can be realized by using "high temperature rolling+ ultra fast cooling+laminar cooling" technique. Compared with "low temperature rolling with large deformation degree" technique, this new technology can decrease the roiling force and in- crease the production efficiency. 展开更多
关键词 ultra fast cooling C-Mn steel grain refinement strengthening phase transformation strengthening grain size
原文传递
An On-line Finite Element Temperature Field Model for Plate Ultra Fast Cooling Process 被引量:1
7
作者 Xiao-lin CHEN Guo-dong WANG +3 位作者 Yong TIAN Bing-xing WANG Guo YUAN Zhao-dong WANG 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2014年第5期481-487,共7页
Taking the element specific-heat interpolation function into account, a one-dimensional (l-D) finite ele- ment temperature field model for the on-line control of the ultra fast cooling process was developed based on... Taking the element specific-heat interpolation function into account, a one-dimensional (l-D) finite ele- ment temperature field model for the on-line control of the ultra fast cooling process was developed based on the heat transfer theory. This 1-D model was successfully implemented in one 4 300 mm plate production line. To improve the calculation accuracy of this model, the temperature-dependent material properties inside an element were considered during the modeling process. Furthermore, in order to satisfy the real-time requirements of the on-line model, the variable bandwidth storage method and the Cholesky decomposition method were used in the programming to storage the data and carry out the numerical solution. The on-line application of the proposed model indicated that the devia- tion between the calculated cooling stop temperature and the measured one was less than ± 15 ℃. 展开更多
关键词 laminar cooling ultra fast cooling temperature field finite element variable bandwidth storage meth-od Cholesky decomposition method
原文传递
The Applications and Practice of Front Ultra Fast Cooling Technology in C-Mn Steel 被引量:1
8
作者 ZUO Jun 1,LIU Yong 2,ZHANG Kai-hua 1,YE Xiao-yu 1,LI Wei-ping 2,HUANG Xu-jing 2 (1.PanGang Group Research Institute Co,Ltd,Chengdu,611731,Sichuan,China 2.PanGang Group Panzhihua Steel & Vanadium Co,Ltd,Panzhihua,617067,Sichuan,China) 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第S1期576-580,共5页
Ultra Fast Cooling is a new technology which used to control the hot-rolling strip cooling in recent years on the international developed.It can achieve fast and accurate temperature control in the hot-rolled strip pr... Ultra Fast Cooling is a new technology which used to control the hot-rolling strip cooling in recent years on the international developed.It can achieve fast and accurate temperature control in the hot-rolled strip production process to obtain corresponding transformation microstructure and ideal mechanical properties.This article describes the technical principle and layout of ultra fast cooling in hot-rolled as well as cooling features.Analysis the effect of front ultra fast cooling technology in C-Mn steel and obtained consequent on the industrial produced low-cost Q345 hot rolled steel in Panzhihua Iron and Steel. 展开更多
关键词 ultra fast cooling controlled rolling and controlled cooling Q345 LOW-COST
原文传递
Improvement of Hole-Expansion Property for Medium Carbon Steels by Ultra Fast Cooling After Hot Strip Rolling 被引量:4
9
作者 WANG Bin LIU Zhen-yu +1 位作者 ZHOU Xiao-guang WANG Guo-dong 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2013年第6期25-32,共8页
The improvement of hole-expansion properties for medium carbon steels by ultra fast cooling (UFC) after hot strip rolling was investigated.It was found that finely dispersed spherical cementite could be formed after... The improvement of hole-expansion properties for medium carbon steels by ultra fast cooling (UFC) after hot strip rolling was investigated.It was found that finely dispersed spherical cementite could be formed after ultra fast cooling , coiling and annealing treatment.Tensile strength of the steel after annealing was measured to be about 440MPa.During hole-expansion test , cracks were observed in the edge region around the punched hole because necking or cracking took place when tangential elongation exceeded the forming limit.Cracks were mainly formed by the coalescence of micro-voids.Fine and homogeneous microstructure comprised of ferrite and spheroidized cementite could increase elongation values of the tested sheets by suppressing the combination of the adjacent micro-voids , resulting in the improved hole-expansion property. 展开更多
关键词 hole-expansion property medium carbon steel ultra fast cooling UFC spheroidized cementite micro-void
原文传递
New bainite kinetics of high strength low alloy steel in fast cooling process
10
作者 Xuan-wei Lei Ji-hua Huang +1 位作者 Shu-hai Chen Xing-ke Zhao 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第2期229-233,共5页
Based on Kolmgorov-Johnson-Mehl-Avrami analysis, a new bainite kinetics of high strength low alloy steel in fast cooling process was developed by utilizing different experimental methods. Upper bainite transformation ... Based on Kolmgorov-Johnson-Mehl-Avrami analysis, a new bainite kinetics of high strength low alloy steel in fast cooling process was developed by utilizing different experimental methods. Upper bainite transformation morphological evolutions at a cooling rate of 8.3 K/s were directly observed by laser scanning confocal microscopy. This qualitative analysis suggests that bainite packet is more suitable to give a one-dimensional growth model if it is considered as a transformation unit. The nucleation rate of bainite packets in fast cooling process is assumed to give an a priori item. One-dimensional growth model with constant growth rate which is assumed as a function of cooling rate is adopted as well. Thus, the devel- oped new bainite kinetics is simple in expression and contains an adjustable parameter and an empirical pa rameter. Experimental results show upper bainite and lower bainite transformations in fast cooling processes. Their referential phase volume fractions are calculated by the expanded lever rule on the first derivative dilatometer curves. For the similar transformation mechanisms, upper bainite and lower bainite are considered to give the same kinetics. With considering the Nakamura's equation, the bainite kinetics is fitted with experimental data. Results show that bainite volume fractions and bainite transformation rates can be expressed precisely bY the newly developed bainite kinetics. 展开更多
关键词 Bainite kinetics fast cooling process High strength low alloy steel Upper bainite Lower bainite
原文传递
Experimental study on the mechanism of flow blockage formation in fast reactor
11
作者 Wen-Hui Jin Song-Bai Cheng Xiao-Xing Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第6期171-182,共12页
Various sources of solid particles might exist in the coolant flow of a liquid metal cooled fast reactor(e.g.,through chemical interaction between the coolant and impurities,air,or water,through corrosion of structura... Various sources of solid particles might exist in the coolant flow of a liquid metal cooled fast reactor(e.g.,through chemical interaction between the coolant and impurities,air,or water,through corrosion of structural materials,or from damaged/molten fuel).Such particles may cause flow blockage accidents in a fuel assembly,resulting in a reduction in coolant flow,which potentially causes a local temperature rise in the fuel cladding,cladding failure,and fuel melt.To understand the blockage formation mechanism,in this study,a series of simulated experiments was conducted by releasing different solid particles from a release device into a reducer pipe using gravity.Through detailed analyses,the influence of various experimental parameters(e.g.,particle diameter,capacity,shape,and static friction coefficient,and the diameter and height of the particle release nozzle)on the blockage characteristics(i.e.,blockage probability and position)was examined.Under the current range of experimental conditions,the blockage was significantly influenced by the aforementioned parameters.The ratio between the particle diameter and outlet size of the reducer pipe might be one of the determining factors governing the occurrence of blockage.Specifically,increasing the ratio enhanced blockage(i.e.,larger probability and higher position within the reducer pipe).Increasing the particle size,particle capacity,particle static friction coefficient,and particle release nozzle diameter led to a rise in the blockage probability;however,increasing the particle release nozzle height had a downward influence on the blockage probability.Finally,blockage was more likely to occur in non-spherical particles case than that of spherical particles.This study provides a large experimental database to promote an understanding of the flow blockage mechanism and improve the validation process of fast reactor safety analysis codes. 展开更多
关键词 Liquid metal cooled fast reactor Flow blockage Granular jamming Experimental study
下载PDF
Controlled Rolling and Cooling Process for Low Carbon Cold Forging Steel 被引量:4
12
作者 李壮 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期89-93,共5页
Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show th... Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show that the specimens with fast cooling after hot rolling exhibit very good mechanical properties, and the improvement of the mechanical properties can be attributed mainly to the ferrite-grain refinement. The mechanical properties increase with decreasing final cooling temperature within the range from 670 ℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony. The specimen with fast cooling after low temperature rolling shows the highest values of the mechanical properties. The effect of the ferrite grain size on the mechanical properties was greater than that of pearlite morphology in the present study. The mechanical properties of specimens by controlled rolling and cooling process without thermal treatment were greatly superior to that of the same specimens by the conventional rolling, and their tensile strength reached 490 MPa grade even in the case of low temperature rolling without controlled rolling. It might be expected to realize the substitution medium-carbon by low-carbon for 490 MPa grade cold forging steel with controlled rolling and cooling process. 展开更多
关键词 controlled rolling and cooling process low carbon cold forging steel fast cooling low temperature rolling the ferrite-grain refineme
下载PDF
Effects of Rolling and Cooling Conditions on Microstructure and Mechanical Properties of Low Carbon Cold Heading Steel 被引量:6
13
作者 LI Zhuang WU Di LV Wei 《Journal of Iron and Steel Research(International)》 SCIE CAS CSCD 2012年第11期64-70,共7页
Effects of rolling and cooling conditions on microstructure and mechanical properties of low carbon cold heading steel were investigated on a laboratory hot rolling mill. The results have shown that the mechanical pro... Effects of rolling and cooling conditions on microstructure and mechanical properties of low carbon cold heading steel were investigated on a laboratory hot rolling mill. The results have shown that the mechanical proper ties of low carbon steels exceed the standard requirements of ML30, ML35, ML40, and ML45 steel, respectively due to thermomechanical controlled processing (TMCP). This is attributed to a significant amount of pearlite and the ferrite-grain refinement. Under the condition of relatively low temperature rolling, the mechanical properties exceed standard requirements of ML45 and ML30 steel after water cooling and air cooling, respectively. Fast cooling which leads to more pearlite and finer ferrite grains is more critical than finish rolling temperatures for low carbon cold heading steel. The specimen at high finish rolling temperature exhibits very good mechanical properties due to fast cooling. This result has great significance not only for energy saving and emission reduction, but also for low-carbon economy, because the goals of the replacement of medium-carbon by low-carbon are achieved with TMCP. 展开更多
关键词 low carbon cold heading steel fast cooling energy saving emission reduction low-carbon economy
原文传递
Influence of Controlled Rolling and Cooling Process on the Mechanical Properties of Low Carbon Cold Forging Steel 被引量:1
14
作者 LI Zhuang 1,WU Di 2,ZHENG Hui 1,DONG Xue-xin 2 (1.School of Materials Science and Engineering,Shenyang University of Aeronautics and Astronautics,Shenyang 110136,Liaoning,China 2.State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110004,Liaoning,China) 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第S1期595-599,共5页
In the present paper,controlled rolling and cooling processing was conducted by using a laboratory hot rolling mill.The influence of different processing parameters on the mechanical properties of low carbon cold forg... In the present paper,controlled rolling and cooling processing was conducted by using a laboratory hot rolling mill.The influence of different processing parameters on the mechanical properties of low carbon cold forging steel was investigated.The results show that the faster cooling after the deformation (especially in low temperature rolling conditions) leads to the refinement of the ferrite grain.The specimen exhibits very good mechanical properties owing to the finer ferrite grains.The pearlite morphologies can also affect the mechanical properties of low carbon cold forging steel.The mechanical properties increase with decreasing final cooling temperature within the range from 650℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony.The mechanical properties of the specimens with fast cooling after the conventional rolling are not only better than those of the specimens with slow cooling after low temperature rolling,but also almost similar to those of the specimens with fast cooling after low temperature rolling.It is suggested that fast cooling after high temperature rolling (the conventional rolling) process would be of important industrial value. 展开更多
关键词 controlled rolling and cooling process low carbon cold forging steel fast cooling the finer ferrite grains mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部