A fast orbit feedback system is designed at SSRF to suppress beam orbit disturbance within sub-micron in the bandwidth up to 100 Hz. The SVD (Singular value decomposition) algorithm is applied to calculate the inverse...A fast orbit feedback system is designed at SSRF to suppress beam orbit disturbance within sub-micron in the bandwidth up to 100 Hz. The SVD (Singular value decomposition) algorithm is applied to calculate the inverse response matrix in global orbit correction. The number of singular eigenvalues will influence orbit noise suppression and corrector strengths. The method to choose singular eigenvalue rejection threshold is studied in this paper, and the simulation and experiment results are also presented.展开更多
In this study, a displacement-reactivity feedback model, which can directly represent the inherent ‘‘thermal expansion extinction effect'' of fast burst reactors(FBRs),was developed with the aid of the stati...In this study, a displacement-reactivity feedback model, which can directly represent the inherent ‘‘thermal expansion extinction effect'' of fast burst reactors(FBRs),was developed with the aid of the static neutron transport component of the FBR-MPC code. Dynamic behaviors of bursts in the Godiva I reactor were simulated by coupling the simplified multiphysics models consisting of the point kinetic equations for neutronics, adiabatic equation for temperature, and thermoelastic equations for displacement/stress with the developed model. The results were compared with the corresponding experimental data and those obtained using the traditional fission yield(temperature rise)-reactivity feedback models. It was found that the developed model can provide good results for the bursts with no or a small inertia effect. For the bursts with a prominent inertia effect, the smaller burst width and asymmetric distribution of the fission rate curve, noticed in the experiments but not evident using the traditional models, can be reproduced. In addition, the realistic oscillations in reactivity and fission rate caused by the core vibration, as well as the deeper sub-prompt criticality in the plateau following the burst, can be observed. Therefore, the developed displacement-reactivity feedback model can be expected to be an effective tool for calculating the dynamic behaviors of bursts.展开更多
The effectiveness of the magnetic confinement of plasma can be improved by elongat- ing the plasma cross-section in tokamak devices. But elongated plasma has vertical displacement instability, so a feedback control sy...The effectiveness of the magnetic confinement of plasma can be improved by elongat- ing the plasma cross-section in tokamak devices. But elongated plasma has vertical displacement instability, so a feedback control system is needed to restrain the plasma's vertical displacement. A fast control power supply is needed to excite the active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, the fast control power supply needs to keep on enhancing the fast response and output current. The structure of a new power supply is introduced in this paper. The method of multiple inverters paralleled with the current sharing reactor is presented to meet the need for large current and fast control. According to the design demands of the EAST fast control power supply, the adjuster of the current close loop is applied to the inverter, which can advance its ability to restrain the loop current in low frequency and DC output. The result of the experiment confirms the validity of the proposed scheme and control strategy.展开更多
为了实现FAST(five hundred meter aperture spherical radio telescope)二级精调稳定平台的高精度轨迹跟踪,建立了采用电动缸驱动的Stewart平台完整动力学模型,基于控制律分解法进行了动力学模型的全局反馈线性化,针对基座的外界干扰...为了实现FAST(five hundred meter aperture spherical radio telescope)二级精调稳定平台的高精度轨迹跟踪,建立了采用电动缸驱动的Stewart平台完整动力学模型,基于控制律分解法进行了动力学模型的全局反馈线性化,针对基座的外界干扰和机构未建模动态的不利影响,在Stewart平台操作空间设计了基于基座平台加速度前馈的PID控制器。建立了现代机电系统仿真模型,对柔性支撑基座存在干扰情况下Stewart平台的动力学与轨迹跟踪控制问题进行了数值仿真,结果表明所设计的控制系统具有跟踪精度高、动力性能平稳和鲁棒性强的优点。展开更多
文摘A fast orbit feedback system is designed at SSRF to suppress beam orbit disturbance within sub-micron in the bandwidth up to 100 Hz. The SVD (Singular value decomposition) algorithm is applied to calculate the inverse response matrix in global orbit correction. The number of singular eigenvalues will influence orbit noise suppression and corrector strengths. The method to choose singular eigenvalue rejection threshold is studied in this paper, and the simulation and experiment results are also presented.
基金supported by a General Financial Grant from the China Postdoctoral Science Foundation(No.2017M623313XB)Key Laboratory of Neutron Physics,CAEP(No.2018BA02)
文摘In this study, a displacement-reactivity feedback model, which can directly represent the inherent ‘‘thermal expansion extinction effect'' of fast burst reactors(FBRs),was developed with the aid of the static neutron transport component of the FBR-MPC code. Dynamic behaviors of bursts in the Godiva I reactor were simulated by coupling the simplified multiphysics models consisting of the point kinetic equations for neutronics, adiabatic equation for temperature, and thermoelastic equations for displacement/stress with the developed model. The results were compared with the corresponding experimental data and those obtained using the traditional fission yield(temperature rise)-reactivity feedback models. It was found that the developed model can provide good results for the bursts with no or a small inertia effect. For the bursts with a prominent inertia effect, the smaller burst width and asymmetric distribution of the fission rate curve, noticed in the experiments but not evident using the traditional models, can be reproduced. In addition, the realistic oscillations in reactivity and fission rate caused by the core vibration, as well as the deeper sub-prompt criticality in the plateau following the burst, can be observed. Therefore, the developed displacement-reactivity feedback model can be expected to be an effective tool for calculating the dynamic behaviors of bursts.
基金supported in part by the ITER Program of China(973 Program)(No.2011GB109002)National Natural Science Foundation of China(No.11275056)
文摘The effectiveness of the magnetic confinement of plasma can be improved by elongat- ing the plasma cross-section in tokamak devices. But elongated plasma has vertical displacement instability, so a feedback control system is needed to restrain the plasma's vertical displacement. A fast control power supply is needed to excite the active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, the fast control power supply needs to keep on enhancing the fast response and output current. The structure of a new power supply is introduced in this paper. The method of multiple inverters paralleled with the current sharing reactor is presented to meet the need for large current and fast control. According to the design demands of the EAST fast control power supply, the adjuster of the current close loop is applied to the inverter, which can advance its ability to restrain the loop current in low frequency and DC output. The result of the experiment confirms the validity of the proposed scheme and control strategy.
文摘为了实现FAST(five hundred meter aperture spherical radio telescope)二级精调稳定平台的高精度轨迹跟踪,建立了采用电动缸驱动的Stewart平台完整动力学模型,基于控制律分解法进行了动力学模型的全局反馈线性化,针对基座的外界干扰和机构未建模动态的不利影响,在Stewart平台操作空间设计了基于基座平台加速度前馈的PID控制器。建立了现代机电系统仿真模型,对柔性支撑基座存在干扰情况下Stewart平台的动力学与轨迹跟踪控制问题进行了数值仿真,结果表明所设计的控制系统具有跟踪精度高、动力性能平稳和鲁棒性强的优点。