提出了一种单顶点多折痕(single-vertex and multi-crease,SVMC)的双稳态折纸软体夹持器,具有结构简单、成本低、变形速度快、承载能力强等优点,有效改善了传统模型响应速度慢、夹持效率低等缺陷。该模型基于水弹结构建立,利用球面三角...提出了一种单顶点多折痕(single-vertex and multi-crease,SVMC)的双稳态折纸软体夹持器,具有结构简单、成本低、变形速度快、承载能力强等优点,有效改善了传统模型响应速度慢、夹持效率低等缺陷。该模型基于水弹结构建立,利用球面三角形余弦定理分析了折痕角度之间的关系并建立运动学方程;同时借助扭簧模型探究变形过程中的势能转化规律。分析了折痕长度与初始角度对能力存储和释放过程的影响,并以此为基础优化了模型结构参数。实验结果表明,当受到2.6 N的外部触发力时,软体夹持器可在61 ms内完成从外展姿态到内缩状态的变化,实现对目标表面的快速包络;同时,借助线绳驱动提供更大的夹紧力,完成对目标的高效稳定抓取。此模型可广泛应用于复杂轮廓目标抓取和快速食品分拣领域。展开更多
Grasping of complicated objects is an active research area which is developing fast throughout the years. Soft grippers can be an effective solution, since they are capable of holding workpieces of various shapes and ...Grasping of complicated objects is an active research area which is developing fast throughout the years. Soft grippers can be an effective solution, since they are capable of holding workpieces of various shapes and interacting with unstructured environments effectively. Soft grippers generally consist of soft, flexible and compliant materials, which are able to conform to the shape of the object so that the gripper will not deform or bruise the soft object. Fast grasping of objects with various sizes and shapes remains a challenging task for soft grippers. In the present article, a soft gripper based on bi-stable dielectric elastomer actuator(DEA) inspired by the insect-catching ability of the Venus flytrap, is designed. This soft gripper can achieve good performances in grasping various objects by a simple actuation system. The gripper can switch from one stable state to another when subject to an impulse voltage of 0.04 s. The time duration for each grasping action is 0.17 s, and no continuous voltage is required for holding the gripped object. Thus, energy consumption can be achieved as low as 0.1386 J per grasping action. The mechanism of achieving bi-stable states is related to the duration of impulse voltage applied and the resonant frequency of the structure. The present study demonstrates that bi-stable dielectric elastomer actuators are capable of achieving fast speed for grasping with very low energy consumption, which is significant in the applications to soft grippers and biomimetic robots.展开更多
文摘提出了一种单顶点多折痕(single-vertex and multi-crease,SVMC)的双稳态折纸软体夹持器,具有结构简单、成本低、变形速度快、承载能力强等优点,有效改善了传统模型响应速度慢、夹持效率低等缺陷。该模型基于水弹结构建立,利用球面三角形余弦定理分析了折痕角度之间的关系并建立运动学方程;同时借助扭簧模型探究变形过程中的势能转化规律。分析了折痕长度与初始角度对能力存储和释放过程的影响,并以此为基础优化了模型结构参数。实验结果表明,当受到2.6 N的外部触发力时,软体夹持器可在61 ms内完成从外展姿态到内缩状态的变化,实现对目标表面的快速包络;同时,借助线绳驱动提供更大的夹紧力,完成对目标的高效稳定抓取。此模型可广泛应用于复杂轮廓目标抓取和快速食品分拣领域。
基金supported by MOE Tier 1,Singapore(Grant No.R-265-000-609-114)the ASTAR,Singapore(Grant No.R-265-000-629-305)
文摘Grasping of complicated objects is an active research area which is developing fast throughout the years. Soft grippers can be an effective solution, since they are capable of holding workpieces of various shapes and interacting with unstructured environments effectively. Soft grippers generally consist of soft, flexible and compliant materials, which are able to conform to the shape of the object so that the gripper will not deform or bruise the soft object. Fast grasping of objects with various sizes and shapes remains a challenging task for soft grippers. In the present article, a soft gripper based on bi-stable dielectric elastomer actuator(DEA) inspired by the insect-catching ability of the Venus flytrap, is designed. This soft gripper can achieve good performances in grasping various objects by a simple actuation system. The gripper can switch from one stable state to another when subject to an impulse voltage of 0.04 s. The time duration for each grasping action is 0.17 s, and no continuous voltage is required for holding the gripped object. Thus, energy consumption can be achieved as low as 0.1386 J per grasping action. The mechanism of achieving bi-stable states is related to the duration of impulse voltage applied and the resonant frequency of the structure. The present study demonstrates that bi-stable dielectric elastomer actuators are capable of achieving fast speed for grasping with very low energy consumption, which is significant in the applications to soft grippers and biomimetic robots.