期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Efficient Concurrent L1-Minimization Solvers on GPUs 被引量:1
1
作者 Xinyue Chu Jiaquan Gao Bo Sheng 《Computer Systems Science & Engineering》 SCIE EI 2021年第9期305-320,共16页
Given that the concurrent L1-minimization(L1-min)problem is often required in some real applications,we investigate how to solve it in parallel on GPUs in this paper.First,we propose a novel self-adaptive warp impleme... Given that the concurrent L1-minimization(L1-min)problem is often required in some real applications,we investigate how to solve it in parallel on GPUs in this paper.First,we propose a novel self-adaptive warp implementation of the matrix-vector multiplication(Ax)and a novel self-adaptive thread implementation of the matrix-vector multiplication(ATx),respectively,on the GPU.The vector-operation and inner-product decision trees are adopted to choose the optimal vector-operation and inner-product kernels for vectors of any size.Second,based on the above proposed kernels,the iterative shrinkage-thresholding algorithm is utilized to present two concurrent L1-min solvers from the perspective of the streams and the thread blocks on a GPU,and optimize their performance by using the new features of GPU such as the shuffle instruction and the read-only data cache.Finally,we design a concurrent L1-min solver on multiple GPUs.The experimental results have validated the high effectiveness and good performance of our proposed methods. 展开更多
关键词 Concurrent L1-minimization problem dense matrix-vector multiplication fast iterative shrinkage-thresholding algorithm CUDA GPUS
下载PDF
A Fast High Order Iterative Solver for the Electromagnetic Scattering by Open Cavities Filled with the Inhomogeneous Media
2
作者 Meiling Zhao 《Advances in Applied Mathematics and Mechanics》 SCIE 2013年第2期235-257,共23页
The scattering of the open cavity filled with the inhomogeneous media is studied.The problem is discretized with a fourth order finite difference scheme and the immersed interfacemethod,resulting in a linear system of... The scattering of the open cavity filled with the inhomogeneous media is studied.The problem is discretized with a fourth order finite difference scheme and the immersed interfacemethod,resulting in a linear system of equations with the high order accurate solutions in the whole computational domain.To solve the system of equations,we design an efficient iterative solver,which is based on the fast Fourier transformation,and provides an ideal preconditioner for Krylov subspace method.Numerical experiments demonstrate the capability of the proposed fast high order iterative solver. 展开更多
关键词 Helmholtz equation compact finite difference scheme discontinuous wave numbers immerse interface method fast iterative solver
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部