期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于快速阈值迭代的SAR层析成像处理方法 被引量:11
1
作者 赵克祥 毕辉 张冰尘 《系统工程与电子技术》 EI CSCD 北大核心 2017年第5期1019-1023,共5页
合成孔径雷达层析成像(synthetic aperture radar tomography,TomoSAR)是将合成孔径原理应用到高程向进行三维成像,相比于传统的二维成像,增加了高程向的信息。传统谱估计方法可用于SAR层析成像,但其高程向分辨率较低。对于高程向分布... 合成孔径雷达层析成像(synthetic aperture radar tomography,TomoSAR)是将合成孔径原理应用到高程向进行三维成像,相比于传统的二维成像,增加了高程向的信息。传统谱估计方法可用于SAR层析成像,但其高程向分辨率较低。对于高程向分布稀疏的场景,压缩感知(compressive sensing,CS)方法可以用于高程向重建,且具有超分辨能力。阈值迭代算法(iterative shrinkage-thresholding,IST)可用于SAR层析成像,但其收敛速度比较慢。介绍了一种快速阈值迭代算法(fast iterative shrinkage-thresholding,FIST)用于SAR层析成像,该方法不仅保持了IST算法计算的准确性,而且具有较快的收敛速度。本文通过仿真实验说明FIST算法在多散射体分辨、单散射体位置估计等方面的特性,并利用TerraSAR-X北京地区实际数据进行SAR层析成像,分析成像效果。研究结果表明FIST算法在多散射体分辨、单散射体位置估计方面优势明显,其应用于SAR层析成像具有较好的成像效果。 展开更多
关键词 合成孔径雷达层析成像 压缩感知 稀疏重建 阈值迭代 快速阈值迭代
下载PDF
Efficient Concurrent L1-Minimization Solvers on GPUs 被引量:1
2
作者 Xinyue Chu Jiaquan Gao Bo Sheng 《Computer Systems Science & Engineering》 SCIE EI 2021年第9期305-320,共16页
Given that the concurrent L1-minimization(L1-min)problem is often required in some real applications,we investigate how to solve it in parallel on GPUs in this paper.First,we propose a novel self-adaptive warp impleme... Given that the concurrent L1-minimization(L1-min)problem is often required in some real applications,we investigate how to solve it in parallel on GPUs in this paper.First,we propose a novel self-adaptive warp implementation of the matrix-vector multiplication(Ax)and a novel self-adaptive thread implementation of the matrix-vector multiplication(ATx),respectively,on the GPU.The vector-operation and inner-product decision trees are adopted to choose the optimal vector-operation and inner-product kernels for vectors of any size.Second,based on the above proposed kernels,the iterative shrinkage-thresholding algorithm is utilized to present two concurrent L1-min solvers from the perspective of the streams and the thread blocks on a GPU,and optimize their performance by using the new features of GPU such as the shuffle instruction and the read-only data cache.Finally,we design a concurrent L1-min solver on multiple GPUs.The experimental results have validated the high effectiveness and good performance of our proposed methods. 展开更多
关键词 Concurrent L1-minimization problem dense matrix-vector multiplication fast iterative shrinkage-thresholding algorithm CUDA GPUS
下载PDF
Synthetic aperture radar imaging based on attributed scatter model using sparse recovery techniques
3
作者 苏伍各 王宏强 阳召成 《Journal of Central South University》 SCIE EI CAS 2014年第1期223-231,共9页
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia... The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR. 展开更多
关键词 attributed scatter center model sparse representation sparse Bayesian learning fast Bayesian matching pursuit smoothed l0 norm sparse reconstruction by separable approximation fast iterative shrinkage-thresholding algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部