A distinctive method is proposed by simply utilizing ultrasonic technique in Ti02 electrode fabrication in order to improve the optoelectronic performance of dye-sensitized solar cells (DSSCs). Dye molecules are at ...A distinctive method is proposed by simply utilizing ultrasonic technique in Ti02 electrode fabrication in order to improve the optoelectronic performance of dye-sensitized solar cells (DSSCs). Dye molecules are at random and single molecular state in the ultrasonic field and the ultrasonic wave favors the diffusion and adsorption processes of dye molecules. As a result, the introduction of ultrasonic technique at room temperature leads to faster and more well-distributed dye adsorption on TiO2 as well as higher cell efficiency than regular deposition, thus the fabrication time is markedly reduced. It is found that the device based on 40 kHz ultrasonic (within 1 h) with N719 exhibits a Voc of 789 mV, Jsc of 14.94 mA]cm2 and fill factor (FF) of 69.3, yielding power conversion efficiency (PCE) of 8.16%, which is higher than device regularly dyed for 12 h (PCE = 8.06%). In addition, the DSSC devices obtain the best efficiency (PCE = 8.68%) when the ultrasonic deposition time increases to 2.5 h. The DSSCs fabricated via ultrasonic technique presents more dye loading, larger photocurrent, less charge recombination and higher photovoltage. The charge extraction and electron impedance spectroscopy (EIS) were performed to understand the influence of ultrasonic technique on the electron recombination and performance of DSSCs.展开更多
Quantum power flow(QPF)offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing.However,the practical implementation of existing QPF algorithms in today’s noisy-i...Quantum power flow(QPF)offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing.However,the practical implementation of existing QPF algorithms in today’s noisy-intermediate-scale quantum(NISQ)era remains limited because of their sensitivity to noise.This paper establishes an NISQ-QPF algorithm that enables power flow computation on noisy quantum devices.The main contributions include:(1)a variational quantum circuit(VQC)-based alternating current(AC)power flow formulation,which enables QPF using short-depth quantum circuits;(2)NISQ-compatible QPF solvers based on the variational quantum linear solver(VQLS)and modified fast decoupled power flow;and(3)an error-resilient QPF scheme to relieve the QPF iteration deviations caused by noise;(3)a practical NISQ-QPF framework for implementable and reliable power flow analysis on noisy quantum machines.Extensive simulation tests validate the accuracy and generality of NISQ-QPF for solving practical power flow on IBM’s real,noisy quantum computers.展开更多
基金supported by the Science Fund for Creative Research Groups(21421004)the National Basic Research 973 Program(2013CB733700)NSFC/China(21172073,21372082,21572062 and 91233207)
文摘A distinctive method is proposed by simply utilizing ultrasonic technique in Ti02 electrode fabrication in order to improve the optoelectronic performance of dye-sensitized solar cells (DSSCs). Dye molecules are at random and single molecular state in the ultrasonic field and the ultrasonic wave favors the diffusion and adsorption processes of dye molecules. As a result, the introduction of ultrasonic technique at room temperature leads to faster and more well-distributed dye adsorption on TiO2 as well as higher cell efficiency than regular deposition, thus the fabrication time is markedly reduced. It is found that the device based on 40 kHz ultrasonic (within 1 h) with N719 exhibits a Voc of 789 mV, Jsc of 14.94 mA]cm2 and fill factor (FF) of 69.3, yielding power conversion efficiency (PCE) of 8.16%, which is higher than device regularly dyed for 12 h (PCE = 8.06%). In addition, the DSSC devices obtain the best efficiency (PCE = 8.68%) when the ultrasonic deposition time increases to 2.5 h. The DSSCs fabricated via ultrasonic technique presents more dye loading, larger photocurrent, less charge recombination and higher photovoltage. The charge extraction and electron impedance spectroscopy (EIS) were performed to understand the influence of ultrasonic technique on the electron recombination and performance of DSSCs.
基金supported in part by the U.S.Department of Energy’s Office of Energy Efficiency and Renewable Energy(EERE)Solar Energy Technologies Office Award(No.38456)in part by the National Science Foundation(No.OIA-2134840).
文摘Quantum power flow(QPF)offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing.However,the practical implementation of existing QPF algorithms in today’s noisy-intermediate-scale quantum(NISQ)era remains limited because of their sensitivity to noise.This paper establishes an NISQ-QPF algorithm that enables power flow computation on noisy quantum devices.The main contributions include:(1)a variational quantum circuit(VQC)-based alternating current(AC)power flow formulation,which enables QPF using short-depth quantum circuits;(2)NISQ-compatible QPF solvers based on the variational quantum linear solver(VQLS)and modified fast decoupled power flow;and(3)an error-resilient QPF scheme to relieve the QPF iteration deviations caused by noise;(3)a practical NISQ-QPF framework for implementable and reliable power flow analysis on noisy quantum machines.Extensive simulation tests validate the accuracy and generality of NISQ-QPF for solving practical power flow on IBM’s real,noisy quantum computers.