This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the...This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the FMBEM are described in details. They are moment calculation, moment to moment translation, moment to local translation, and local to local translation. A data structure for the quad-tree construction is proposed which can facilitate implementation. An analytical moment expression is derived, which is more accurate, stable, and efficient than direct numerical computation. Numerical examples are presented to demonstrate the accuracy and efficiency of the FMBEM, and radiation of a 2D vibration rail mode is simulated using the FMBEM.展开更多
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations s...This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only.Moreover,a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived,and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating,translating and saving the multipole/local expansion coefficients of the image domain.The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems.As for exterior acoustic problems,the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method.Details on the implementation of the present method are described,and numerical examples are given to demonstrate its accuracy and efficiency.展开更多
In this paper, an adaptive boundary element method (BEM) is presented for solving 3-D elasticity problems. The numerical scheme is accelerated by the new version of fast multipole method (FMM) and parallelized on ...In this paper, an adaptive boundary element method (BEM) is presented for solving 3-D elasticity problems. The numerical scheme is accelerated by the new version of fast multipole method (FMM) and parallelized on distributed memory architectures. The resulting solver is applied to the study of representative volume element (RVE) for short fiberreinforced composites with complex inclusion geometry. Numerical examples performed on a 32-processor cluster show that the proposed method is both accurate and efficient, and can solve problems of large size that are challenging to existing state-of-the-art domain methods.展开更多
We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements...We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements are solved efficiently. This is an extension of the fast multipole BEM for two-dimensional (2D) acoustic problems developed by authors recently. Some new improvements are obtained. In this new technique, the improved Burton-Miller formulation is employed to over-come non-uniqueness difficulties in the conventional BEM for exterior acoustic problems. The computational efficiency is further improved by adopting the FMM and the block diagonal preconditioner used in the generalized minimum residual method (GMRES) iterative solver to solve the system matrix equation. Numerical results clearly demonstrate the complete reliability and efficiency of the proposed algorithm. It is potentially useful for solving large-scale engineering acoustic scattering problems.展开更多
The surface electric field analysis of the converter valve shield system is a large-scale electrostatic field problem, which is difficult to analyse. The fast multipole boundary element method(FMBEM), which is suitabl...The surface electric field analysis of the converter valve shield system is a large-scale electrostatic field problem, which is difficult to analyse. The fast multipole boundary element method(FMBEM), which is suitable for solving large-scale problems,can accelerate the computation speed and conserve memory. However, the coefficient matrix implicitly formed by using the FMBEM is sometimes ill-conditioned, especially for large-scale problems; thus, the convergence of iteration is poor. In this paper, a fast solver is proposed to improve efficiency. First, an adaptive GMRES(m) with variant restart parameter is adjusted for the Galerkin FMBEM. In addition, the sparse approximate inverse preconditioner is improved, and a new sparsity pattern is proposed for the multiscale problem derived from the converter valve shield system. The numerical results show that the accuracy can meet the engineering requirements compared with the finite element method. Compared with other solvers and preconditioners, the algorithm can achieve a satisfactory convergence rate and reduce the computation time. In addition, a single bridge shield system of ±160 kV converter valve is successfully analysed using the proposed method.展开更多
A fast multipole boundary element method(FMBEM)is developed for the analysis of 2D linear viscoelastic composites with imperfect viscoelastic interfaces.The transformed fast multipole formulations are established usin...A fast multipole boundary element method(FMBEM)is developed for the analysis of 2D linear viscoelastic composites with imperfect viscoelastic interfaces.The transformed fast multipole formulations are established using the time domain method. To simulate the viscoelastic behavior of imperfect interfaces that are frequently encountered in practice,the Kelvin type model is introduced.The FMBEM is further improved by incorporating naturally the interaction among inclusions as well as eliminating the phenomenon of material penetration.Since all the integrals are evaluated analytically,high accuracy and fast convergence of the numerical scheme are obtained.Several numerical examples,including planar viscoelastic composites with a single inclusion or randomly distributed multi-inclusions are presented.The numerical results are compared with the developed analytical solutions,which illustrates that the proposed FMBEM is very efficient in determining the macroscopic viscoelastic behavior of the particle-reinforced composites with the presence of imperfect interfaces.The laboratory measurements of the mixture creep compliance of asphalt concrete are also compared with the prediction by the developed model.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11074170)the State Key Laboratory Foundation of Shanghai Jiao Tong University(No.MSVMS201105)
文摘This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the FMBEM are described in details. They are moment calculation, moment to moment translation, moment to local translation, and local to local translation. A data structure for the quad-tree construction is proposed which can facilitate implementation. An analytical moment expression is derived, which is more accurate, stable, and efficient than direct numerical computation. Numerical examples are presented to demonstrate the accuracy and efficiency of the FMBEM, and radiation of a 2D vibration rail mode is simulated using the FMBEM.
基金supported by the National Natural Science Foundation of China (11172291)the National Science Foundation for Post-doctoral Scientists of China (2012M510162)the Fundamental Research Funds for the Central Universities (KB2090050024)
文摘This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only.Moreover,a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived,and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating,translating and saving the multipole/local expansion coefficients of the image domain.The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems.As for exterior acoustic problems,the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method.Details on the implementation of the present method are described,and numerical examples are given to demonstrate its accuracy and efficiency.
基金The project supported by the National Natural Science Foundation of China (10472051)
文摘In this paper, an adaptive boundary element method (BEM) is presented for solving 3-D elasticity problems. The numerical scheme is accelerated by the new version of fast multipole method (FMM) and parallelized on distributed memory architectures. The resulting solver is applied to the study of representative volume element (RVE) for short fiberreinforced composites with complex inclusion geometry. Numerical examples performed on a 32-processor cluster show that the proposed method is both accurate and efficient, and can solve problems of large size that are challenging to existing state-of-the-art domain methods.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010MS080)the Research Fund for Doctoral Program of Higher Education of China (Grant No. 20070487403)
文摘We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements are solved efficiently. This is an extension of the fast multipole BEM for two-dimensional (2D) acoustic problems developed by authors recently. Some new improvements are obtained. In this new technique, the improved Burton-Miller formulation is employed to over-come non-uniqueness difficulties in the conventional BEM for exterior acoustic problems. The computational efficiency is further improved by adopting the FMM and the block diagonal preconditioner used in the generalized minimum residual method (GMRES) iterative solver to solve the system matrix equation. Numerical results clearly demonstrate the complete reliability and efficiency of the proposed algorithm. It is potentially useful for solving large-scale engineering acoustic scattering problems.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2017XS006)
文摘The surface electric field analysis of the converter valve shield system is a large-scale electrostatic field problem, which is difficult to analyse. The fast multipole boundary element method(FMBEM), which is suitable for solving large-scale problems,can accelerate the computation speed and conserve memory. However, the coefficient matrix implicitly formed by using the FMBEM is sometimes ill-conditioned, especially for large-scale problems; thus, the convergence of iteration is poor. In this paper, a fast solver is proposed to improve efficiency. First, an adaptive GMRES(m) with variant restart parameter is adjusted for the Galerkin FMBEM. In addition, the sparse approximate inverse preconditioner is improved, and a new sparsity pattern is proposed for the multiscale problem derived from the converter valve shield system. The numerical results show that the accuracy can meet the engineering requirements compared with the finite element method. Compared with other solvers and preconditioners, the algorithm can achieve a satisfactory convergence rate and reduce the computation time. In addition, a single bridge shield system of ±160 kV converter valve is successfully analysed using the proposed method.
基金supported by the National Natural Science Foundation of China(Grant No.10725210)the National Basic Research Program of China(Grant No.2009CB623200)
文摘A fast multipole boundary element method(FMBEM)is developed for the analysis of 2D linear viscoelastic composites with imperfect viscoelastic interfaces.The transformed fast multipole formulations are established using the time domain method. To simulate the viscoelastic behavior of imperfect interfaces that are frequently encountered in practice,the Kelvin type model is introduced.The FMBEM is further improved by incorporating naturally the interaction among inclusions as well as eliminating the phenomenon of material penetration.Since all the integrals are evaluated analytically,high accuracy and fast convergence of the numerical scheme are obtained.Several numerical examples,including planar viscoelastic composites with a single inclusion or randomly distributed multi-inclusions are presented.The numerical results are compared with the developed analytical solutions,which illustrates that the proposed FMBEM is very efficient in determining the macroscopic viscoelastic behavior of the particle-reinforced composites with the presence of imperfect interfaces.The laboratory measurements of the mixture creep compliance of asphalt concrete are also compared with the prediction by the developed model.