High-purity N2 was used to increase the mobile phase flow rate during ion purification of ion-exchange resin. This was performed to improve the efficiency of isotope separation and puri- fication, and to meet the effi...High-purity N2 was used to increase the mobile phase flow rate during ion purification of ion-exchange resin. This was performed to improve the efficiency of isotope separation and puri- fication, and to meet the efficiency requirements of rapid multiple-collector-inductively coupled plasma mass spectrometry (MC-ICPMS) analysis. For Cu isotope separation, our results indicated that at a gas flow rate 〉60 mL/min, the separation chromatographic peaks broadened and the re-covery rate decreased to 〈99.2%. On the other hand, no significant change in the Cu peaks was ob- served at a gas flow rate of 20 mL/min and the recovery rate was determined to be 〉99.9%. The Cu isotope ratio, measured by the standard-sample bracketing method, agreed with reference data within a±2 SD error range. The separation time was reduced from the traditional 10 h (without N2) to 4 h (with N2), indicating that the efficiency was more than doubled. Moreover, Sr and Nd isotope separation in AGV-2 (US Geological Survey andesite standard sample) accelerated with a 20 mL/min gas flow, demonstrating that with the passage of N2, the purified liquid comprised Rb/Sr and Sm/Nd ratios of 〈0.000 049 and 〈0.000 001 5, respectively. This indicated an effective separation of Rb from Sr and Sm from Nd. MC-ICPMS could therefore be applied to accurately determine Sr and Nd isotope ratios. The results afforded were consistent with the reference data within a±2 SD error range and the total separation time was shortened from 2 d to 〈10 h.展开更多
基金co-supported by the National Natural Science Foundation of China (Nos. 41427804, 41421002, 41373004)Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT1281)the MOST Research Foundation from the State Key Laboratory of Continental Dynamics
文摘High-purity N2 was used to increase the mobile phase flow rate during ion purification of ion-exchange resin. This was performed to improve the efficiency of isotope separation and puri- fication, and to meet the efficiency requirements of rapid multiple-collector-inductively coupled plasma mass spectrometry (MC-ICPMS) analysis. For Cu isotope separation, our results indicated that at a gas flow rate 〉60 mL/min, the separation chromatographic peaks broadened and the re-covery rate decreased to 〈99.2%. On the other hand, no significant change in the Cu peaks was ob- served at a gas flow rate of 20 mL/min and the recovery rate was determined to be 〉99.9%. The Cu isotope ratio, measured by the standard-sample bracketing method, agreed with reference data within a±2 SD error range. The separation time was reduced from the traditional 10 h (without N2) to 4 h (with N2), indicating that the efficiency was more than doubled. Moreover, Sr and Nd isotope separation in AGV-2 (US Geological Survey andesite standard sample) accelerated with a 20 mL/min gas flow, demonstrating that with the passage of N2, the purified liquid comprised Rb/Sr and Sm/Nd ratios of 〈0.000 049 and 〈0.000 001 5, respectively. This indicated an effective separation of Rb from Sr and Sm from Nd. MC-ICPMS could therefore be applied to accurately determine Sr and Nd isotope ratios. The results afforded were consistent with the reference data within a±2 SD error range and the total separation time was shortened from 2 d to 〈10 h.