This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
In this paper,we propose a novel adjustable multiple cross-hexagonal search(AMCHS) algorithm for fast block motion estimation. It employs adjustable multiple cross search patterns(AMCSP) in the first step and then use...In this paper,we propose a novel adjustable multiple cross-hexagonal search(AMCHS) algorithm for fast block motion estimation. It employs adjustable multiple cross search patterns(AMCSP) in the first step and then uses half-way-skip and half-way-stop technique to determine whether to employ two hexagonal search patterns(HSPs) subsequently. The AMCSP can be used to find small motion vectors efficiently while the HSPs can be used to find large ones accurately to ensure prediction quality. Simulation results showed that our proposed AMCHS achieves faster search speed,and provides better distortion performance than other popular fast search algorithms,such as CDS and CDHS.展开更多
Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The detection performance of the periodogram and its variants methods is evaluated. The variants methods Perfo...Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The detection performance of the periodogram and its variants methods is evaluated. The variants methods Performance evaluation through the Receiver Operating Characteristics (ROCs) are presented and compared from the viewpoint of probability of detection (Pd), probability of false alarm (Pfa) by computer simulation. When the sinusoid frequency does not correspond to one of the spectral bins (mid-bin frequency situation), the performance of all the mentioned detectors degrades. This research investigates the development of a bearing estimation method using Fast Orthogonal Search (FOS) to enhance spectral estimation which, improves both target detection and bearing estimation in case of low SNR inputs.展开更多
A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also fa...A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).展开更多
In this paper, we proposed a novel Two-layer Motion Estimation(TME) which searches motion vectors on two layers with partial distortion measures in order to reduce the overwhelming computational complexity of Motion E...In this paper, we proposed a novel Two-layer Motion Estimation(TME) which searches motion vectors on two layers with partial distortion measures in order to reduce the overwhelming computational complexity of Motion Estimation(ME) in video coding. A layer is an image which is derived from the reference frame such that the sum of a block of pixels in the reference frame determines the point of a layer. It has been noticed on different video sequences that many motion vectors on the layers are the same as those searched on the reference frame. The proposed TME performs a coarse search on the first layer to identify the small region in which the best candidate block is likely to be positioned and then perform local refined search on the next layer to pick the best candidate block in the located small area. The key feature of TME is its flexibility of mixing with any fast search algorithm. Experimental results on a wide variety of video sequences show that the proposed algorithm has achieved both fast speed and good motion prediction quality when compared to well known as well as the state-of-the-art fast block matching algorithms.展开更多
Using a triangular lattice model to study the designability of proteinfolding, we overcame the parity problem of previous cubic lattice model and enumerated all thesequences and compact structures on a simple two-dime...Using a triangular lattice model to study the designability of proteinfolding, we overcame the parity problem of previous cubic lattice model and enumerated all thesequences and compact structures on a simple two-dimensional triangular lattice model of size4+5+6+5+4. We used two types of amino acids, hydrophobic and polar, to make up the sequences, andachieved 2^(23)+2^(12) different sequences excluding the reverse symmetry sequences. The totalstring number of distinct compact structures was 219,093, excluding reflection symmetry in theself-avoiding path of length 24 triangular lattice model. Based on this model, we applied a fastsearch algorithm by constructing a cluster tree. The algorithm decreased the computation bycomputing the objective energy of non-leaf nodes. The parallel experiments proved that the fast treesearch algorithm yielded an exponential speed-up in the model of size 4+5+6+5+4. Designabilityanalysis was performed to understand the search result.展开更多
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
文摘In this paper,we propose a novel adjustable multiple cross-hexagonal search(AMCHS) algorithm for fast block motion estimation. It employs adjustable multiple cross search patterns(AMCSP) in the first step and then uses half-way-skip and half-way-stop technique to determine whether to employ two hexagonal search patterns(HSPs) subsequently. The AMCSP can be used to find small motion vectors efficiently while the HSPs can be used to find large ones accurately to ensure prediction quality. Simulation results showed that our proposed AMCHS achieves faster search speed,and provides better distortion performance than other popular fast search algorithms,such as CDS and CDHS.
文摘Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The detection performance of the periodogram and its variants methods is evaluated. The variants methods Performance evaluation through the Receiver Operating Characteristics (ROCs) are presented and compared from the viewpoint of probability of detection (Pd), probability of false alarm (Pfa) by computer simulation. When the sinusoid frequency does not correspond to one of the spectral bins (mid-bin frequency situation), the performance of all the mentioned detectors degrades. This research investigates the development of a bearing estimation method using Fast Orthogonal Search (FOS) to enhance spectral estimation which, improves both target detection and bearing estimation in case of low SNR inputs.
基金Supported by the National Natural Science Foundation of China(61103157)
文摘A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).
文摘In this paper, we proposed a novel Two-layer Motion Estimation(TME) which searches motion vectors on two layers with partial distortion measures in order to reduce the overwhelming computational complexity of Motion Estimation(ME) in video coding. A layer is an image which is derived from the reference frame such that the sum of a block of pixels in the reference frame determines the point of a layer. It has been noticed on different video sequences that many motion vectors on the layers are the same as those searched on the reference frame. The proposed TME performs a coarse search on the first layer to identify the small region in which the best candidate block is likely to be positioned and then perform local refined search on the next layer to pick the best candidate block in the located small area. The key feature of TME is its flexibility of mixing with any fast search algorithm. Experimental results on a wide variety of video sequences show that the proposed algorithm has achieved both fast speed and good motion prediction quality when compared to well known as well as the state-of-the-art fast block matching algorithms.
文摘Using a triangular lattice model to study the designability of proteinfolding, we overcame the parity problem of previous cubic lattice model and enumerated all thesequences and compact structures on a simple two-dimensional triangular lattice model of size4+5+6+5+4. We used two types of amino acids, hydrophobic and polar, to make up the sequences, andachieved 2^(23)+2^(12) different sequences excluding the reverse symmetry sequences. The totalstring number of distinct compact structures was 219,093, excluding reflection symmetry in theself-avoiding path of length 24 triangular lattice model. Based on this model, we applied a fastsearch algorithm by constructing a cluster tree. The algorithm decreased the computation bycomputing the objective energy of non-leaf nodes. The parallel experiments proved that the fast treesearch algorithm yielded an exponential speed-up in the model of size 4+5+6+5+4. Designabilityanalysis was performed to understand the search result.