Setting time and strength of sulphoaluminate rapid hardening cement (SAC) incorporated in the presence and absence of silica fume (SF) were determined. Combined with the techniques of" isothermal calorimeter, XRD...Setting time and strength of sulphoaluminate rapid hardening cement (SAC) incorporated in the presence and absence of silica fume (SF) were determined. Combined with the techniques of" isothermal calorimeter, XRD and FSEM, the hydration kinetics of the two systems and the effect mechanism of SF on SAC were investigated. The experimental results showed that SF was proved to be beneficial for SAC system, in terms of setting time and late strength gain. Evidence of accelerator effect of silica fume was found during the first 8 hours of hydration. The formation of AFt was accelerated and the microstructure of the hydration products grew denser with incorporation of SF. SF was proved to play the role of dispersion and setting control at early age and had a greater contribution to later strength due to the increment of crystal nucleation point and the pozzolanic activity. Therefore, SF can be used to not only control the hydration kinetics of SAC, but also develop the late strength and improve the microstructure.展开更多
In some cases of emergency backfill engineering projects, traditional backfill materials cannot meet the requirements of fast construction due to their long curing time. This study presents a new kind of rapid hardeni...In some cases of emergency backfill engineering projects, traditional backfill materials cannot meet the requirements of fast construction due to their long curing time. This study presents a new kind of rapid hardening controlled low strength material, which utilizes both rapid hardening sulphoaluminate cement and recycled fine aggregate from urban red brick construction waste. Totally, sixteen mixtures were prepared for the experiment with different cement-to-sand ratios and water-to-solid ratios. The flowability and bleeding rate of fresh mixture were measured to evaluate its workability, and the compressive strength of hardened mixture was tested to evaluate its rapid hardening and mechanical properties. Test results indicate that rapid hardening controlled low strength material containing recycled fine aggregate from urban red brick construction waste can achieve the desirable flowability, but the bleeding rate increases with the increase of flowability. In addition, 2-hour compressive strength can reach 0.08 - 0.12 MPa, and 4-hour compressive strength is 0.32 - 1.54 MPa, which can meet the requirements of emergency backfill construction. At last, based on the derived compressive strength, a fitting model for predicting compressive strength evolution of this new rapid hardening backfill material is developed, which fits accurately with these experimental data.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51379163 and 51372184)the National Key Research Program(973 Program)(No.2013CB035901)
文摘Setting time and strength of sulphoaluminate rapid hardening cement (SAC) incorporated in the presence and absence of silica fume (SF) were determined. Combined with the techniques of" isothermal calorimeter, XRD and FSEM, the hydration kinetics of the two systems and the effect mechanism of SF on SAC were investigated. The experimental results showed that SF was proved to be beneficial for SAC system, in terms of setting time and late strength gain. Evidence of accelerator effect of silica fume was found during the first 8 hours of hydration. The formation of AFt was accelerated and the microstructure of the hydration products grew denser with incorporation of SF. SF was proved to play the role of dispersion and setting control at early age and had a greater contribution to later strength due to the increment of crystal nucleation point and the pozzolanic activity. Therefore, SF can be used to not only control the hydration kinetics of SAC, but also develop the late strength and improve the microstructure.
文摘In some cases of emergency backfill engineering projects, traditional backfill materials cannot meet the requirements of fast construction due to their long curing time. This study presents a new kind of rapid hardening controlled low strength material, which utilizes both rapid hardening sulphoaluminate cement and recycled fine aggregate from urban red brick construction waste. Totally, sixteen mixtures were prepared for the experiment with different cement-to-sand ratios and water-to-solid ratios. The flowability and bleeding rate of fresh mixture were measured to evaluate its workability, and the compressive strength of hardened mixture was tested to evaluate its rapid hardening and mechanical properties. Test results indicate that rapid hardening controlled low strength material containing recycled fine aggregate from urban red brick construction waste can achieve the desirable flowability, but the bleeding rate increases with the increase of flowability. In addition, 2-hour compressive strength can reach 0.08 - 0.12 MPa, and 4-hour compressive strength is 0.32 - 1.54 MPa, which can meet the requirements of emergency backfill construction. At last, based on the derived compressive strength, a fitting model for predicting compressive strength evolution of this new rapid hardening backfill material is developed, which fits accurately with these experimental data.