A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there ...A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.展开更多
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are...Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.展开更多
Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation d...Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.展开更多
A programmable high-accuracy system was proposed to collect and process telemetric fast varying signals,which consists of pre-circuit,analog-to-digital(A/D)conversion unit and signal collection and processing part.P...A programmable high-accuracy system was proposed to collect and process telemetric fast varying signals,which consists of pre-circuit,analog-to-digital(A/D)conversion unit and signal collection and processing part.Performance analysis demonstrates that this novel telemetry-acquisition method is a potential solution to rapidly process fast varying signals and efficiently utilize telemetry channel.展开更多
A fast version of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) climate system model is briefly documented. Th...A fast version of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) climate system model is briefly documented. The fast coupled model employs a low resolution version of the atmospheric component Grid Atmospheric Model of IAP/LASG (GAMIL), with the other parts of the model, namely an oceanic component LASG/IAP Climate Ocean Model (LICOM), land component Common Land Model (CLM), and sea ice component from National Center for Atmospheric Research Community Climate System Model (NCAR CCSM2), as the same as in the standard version of LASG/IAP Flexible Global Ocean Atmosphere Land System model (FGOALS_g). The parameterizations of physical and dynamical processes of the atmospheric component in the fast version are identical to the standard version, although some parameter values are different. However, by virtue of reduced horizontal resolution and increased time-step of the most time-consuming atmospheric component, it runs faster by a factor of 3 and can serve as a useful tool for longterm and large-ensemble integrations. A 1000-year control simulation of the present-day climate has been completed without flux adjustments. The final 600 years of this simulation has virtually no trends in global mean sea surface temperatures and is recommended for internal variability studies. Several aspects of the control simulation's mean climate and variability are evaluated against the observational or reanalysis data. The strengths and weaknesses of the control simulation are evaluated. The mean atmospheric circulation is well simulated, except in high latitudes. The Asian-Australian monsoonal meridional cell shows realistic features, however, an artificial rainfall center is located to the eastern periphery of the Tibetan Plateau persists throughout the year. The mean bias of SST resembles that of the standard version, appearing as a "double ITCZ" (Inter-Tropical Convergence Zone) associated with a westward extension of the equatorial eastern Pacific cold tongue. The sea ice extent is acceptable but has a higher concentration. The strength of Atlantic meridional overturning is 27.5 Sv. Evidence from the 600-year simulation suggests a modulation of internal variability on ENSO frequency, since both regular and irregular oscillations of ENSO are found during the different time periods of the long-term simulation.展开更多
Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accurac...Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accuracy of the training samples. In order to reduce the errors of manual classification, an automatic clustering algorithm is proposed and applied to diagnose down-hole conditions of pumping systems. The spectral clustering (SC) is a new clustering algorithm, which is suitable for any data distribution. However, it is sensitive to initial cluster centers and scale parameters, and needs to predefine the cluster number. In order to overcome these shortcom- ings, we propose an automatic clustering algorithm, fast black hole-spectral clustering (FBH-SC). The FBH algo- rithm is used to replace the K-mean method in SC, and a CritC index function is used as the target function to automatically choose the best scale parameter and clus- tering number in the clustering process. Different simulation experiments were designed to define the relationship among scale parameter, clustering number, CritC index value, and clustering accuracy. Finally, an example is given to validate the effectiveness of the proposed algorithm.展开更多
Changes in distribution density,morphology and secretory content of endocrine cells in the gastro-entero-pancreatic system of black-spotted frogs Rana nigromaculata before and after fasting were investigated using imm...Changes in distribution density,morphology and secretory content of endocrine cells in the gastro-entero-pancreatic system of black-spotted frogs Rana nigromaculata before and after fasting were investigated using immunohistochemistry and antisera to six gut hormones.Six types of endocrine cells were detected in the digestive tract of Rana nigromaculata,including 5-hydroxytryptamine(5-HT),gastrin(GAS),somatostatin(SOM),glucagon(GLU),pancreatic polypeptide(PP)and vasoactive intestinal polypeptide(VIP)cells.After fasting,the density of 5-HT cells in the esophagus,cardia and fundus,GAS cells in the fundus and pylorus,PP cells in the fundus decreased significantly(P<0.01),while SOM cells in the cardia,GLU cells in the rectum increased significantly(P<0.01).The cytoplasmic processes of 5-HT cells became shorter or not detectable.The secretory content of GAS cells reduced in the cardia.The positive immunostaining reaction in the perinuclear region of SOM cells in the cardia,fundus and pylorus became weaker,while the staining intensity in the periphery of these cells became stronger.VIP cells were not detectable in the whole digestive tract after fasting.Five types of endocrine cells were found in the pancreas of Rana nigromaculata,including 5-HT,GAS,SOM,GLU and PP cells.After fasting,the density of 5-HT cells decreased slightly(P>0.05),while SOM,GAS,GLU and PP cells increased significantly(P<0.01).Furthermore,the secretory content of GLU cells increased significantly.Considering their functionalities,our results indicate that the changes of GEP endocrine cells in Rana nigromaculata responded adaptively to starvation-induced stress.展开更多
This paper reports on the status of technology development under a national project launched in 2019 to address the problem of decreased system inertia associated with the large-scale integration of renewable energy.T...This paper reports on the status of technology development under a national project launched in 2019 to address the problem of decreased system inertia associated with the large-scale integration of renewable energy.The project comprises two parts:the development of a system inertia observation technology using a continuous monitoring system to observe inertia and development of an inverter equipped with a function to provide virtual inertia as a countermeasure device.Utilizing both these efforts,the project aims to facilitate the introduction of renewable energy in the future with minimum restrictions.It was confirmed that the trend of inertia observed with the developed method was generally the same as that of the total inertia of synchronous machines observed by an electric utility.The effectiveness of the countermeasure device in reducing the frequency swing during a disturbance was confirmed through evaluation tests.展开更多
A novel adaptive noise cancellation method for wheel speed signal of the anti-lock braking system/ anti-slip regulation(ABS/ASR) control system is proposed. Based on the spectrum distribution of vehicle's wheel spe...A novel adaptive noise cancellation method for wheel speed signal of the anti-lock braking system/ anti-slip regulation(ABS/ASR) control system is proposed. Based on the spectrum distribution of vehicle's wheel speed signal got from fast Fourier transform under various conditions, the high-pass filter is used to deal with original wheel speed signals sampled to get reference noise signal and the original wheel speed signals are used as adaptive filter's desired outputs. The difference between original signals and reference noise signals is used as the error signal for the adaptive FIR filter and also used as the whole adaptive noise cancellation system's final output. This method can obtain the noise signal on-line and is easy to use for. real control system, which is useful to improve the performance of integrate system ABS/ASR.展开更多
This paper develops a fast filtering algorithm based on vibration systems theory and neural information exchange approach. The characters, including the derivation process and parameter analysis, are discussed and the...This paper develops a fast filtering algorithm based on vibration systems theory and neural information exchange approach. The characters, including the derivation process and parameter analysis, are discussed and the feasibility and the effectiveness are testified by the filtering performance compared with various filtering methods, such as the fast wavelet transform algorithm, the particle filtering method and our previously developed single degree of freedom vibration system filtering algorithm, according to simulation and practical approaches. Meanwhile, the comparisons indicate that a significant advantage of the proposed fast filtering algorithm is its extremely fast filtering speed with good filtering perfi^rmance. Further, the developed fast filtering algorithm is applied to the navigation and positioning system of the micro motion robot, which is a high real-time requirement for the signals preprocessing. Then, the preprocessing data is used to estimate the heading angle error and the attitude angle error of the micro motion robot. The estimation experiments illustrate the high practicality of the proposed fast filtering algorithm.展开更多
A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated.Based on the different cooling mechanisms,a serial of mathematic models were established to describe the relations...A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated.Based on the different cooling mechanisms,a serial of mathematic models were established to describe the relationship between water flow and spraying pressure and the relationship between water spraying heat flux and layout of nozzles installed on the top and bottom cooling headers.Model parameters were validated by measured data.Heat transfer models including air convection model,heat radiation model and water cooling capacity model were detailedly introduced.In addition,effects on cooling capacity by water temperature and different valve patterns were also presented.Finally,the comparison results from UFC used or not have been provided with respect to temperature evolution and mechanical properties of Q235B steel grade with thickness of 7.8 mm.Since online application of the sophisticated CTC process control system based on these models,run-out table cooling control system has been running stably and reliably to produce resource-saving,low-cost steels with smaller grain size.展开更多
This paper presents the design of an experimental battlefield dynamic scanning and staring imaging system based on a fast steering mirror(FSM), which is capable of real-time monitoring of hot targets and wide-area rec...This paper presents the design of an experimental battlefield dynamic scanning and staring imaging system based on a fast steering mirror(FSM), which is capable of real-time monitoring of hot targets and wide-area reconnaissance of hot regions. First,the working principle and working sequence of the FSM are briefly analyzed. The mathematical model of the FSM system is built by modeling its dynamic and electrical properties, and the rationality of the model is validated by means of model identification. Second,the influence of external sources of disturbance such as the carrier and moment on the control precision of the FSM is effectively suppressed by the jointly controlling of proportional integral(PI)and disturbance observer(DOB), thus realizing a high precision and strong robustness control of the FSM system. Then, this paper designs an experimental prototype and introduces a special optical structure to enable the infrared camera to share the FSM with the visible light camera. Finally, the influence of the velocity difference between the mirror of the FSM and the rotating platform on the imaging quality of the system is experimentally analyzed by using the image sharpness evaluation method based on point sharpness. A good dynamic scanning and staring imaging result is achieved when the velocity of these two components correspond.展开更多
The ambitious global targets on decarbonization present the need for massive integration of renewable generation in power systems,resulting in a significant decrease in the system inertia.In addition to the reduction ...The ambitious global targets on decarbonization present the need for massive integration of renewable generation in power systems,resulting in a significant decrease in the system inertia.In addition to the reduction in system inertia,the transmission system in Great Britain(GB)faces some unique challenges owing to its relatively small capacity,while being decoupled from other transmission systems and with the renewable resources largely non-uniformly distributed across the system.This paper presents opinions and insights on the challenges associated with frequency control in a low-inertia system and the potential solutions from a GB perspective.In this paper,we focus on three main techniques that act over different time scales:synchronous condensers,inertia emulation,and fast frequency response.We evaluate their relative advantages and limitations with learnings from recent research and development projects in GB,along with the opinions on their roles in addressing the frequency control challenges in future low-inertia systems.展开更多
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam...In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.展开更多
A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequ...A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequency domains is given.The pilots in accordance with a novel random pilot matrix in both time and frequency domains are sent to measure the delay-Doppler sparsity channel.The relatively nonzero channel coefficients are tracked by random pilots at a sampling rate significantly below the Nyquist rate.The sparsity channels are estimated from a very limited number of channel measurements by the basis pursuit algorithm.The proposed algorithm can effectively improve the channel estimation performance when the number of pilot symbols is reduced with improvement of throughput efficiency.展开更多
This paper presents a multi-antenna GPS based system developed for local continuous deformation monitoring. Due to a large number of points that needs to be monitored, the standard approaches of using permanent GPS re...This paper presents a multi-antenna GPS based system developed for local continuous deformation monitoring. Due to a large number of points that needs to be monitored, the standard approaches of using permanent GPS receiver arrays will cause high cost. It eventually becomes the limiting factor for large-scale use of GPS in these application areas. Multi-antenna GPS system allows a number of GPS antennas to be linked to one GPS receiver by a specially designed electronic component, i. e. the so-called GPS multi-antenna switch (GMS), The receiver takes data sequentially from each of the antennas attached to the receiver. A distinctive advantage of the approach is that one GPS receiver can be used to monitor more than one point. The cost per monitored point (i. e. the expenses of hardware) is therefore significantly reduced.展开更多
The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of ...The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of the system,a fast non-singular end sliding mode(FNTSM)surface function based on traditional NTSM control is developed.The theoretical analysis proves that the FNTSM surface function has a faster dynamic response and more finite-time convergence.In addition,for the self-vibration problem caused by high sliding mode switching gain,an FNTSM control method with anti-disturbance capability was designed based on the linear disturbance observer(DO),i.e.the FNTSMDO method was employed to devise the PMSM speed regulator.The comparative simulation and experiment results with traditional PI control and NTSM control methods indicate that the FNTSMDO method could improve the dynamic performance and anti-interference of the system.展开更多
Even though switching in vacuum is a technology with almost 100 years of history,its recent develop-ments are still changing the future of power transmission and distribution systems.First,current switch-ing in vacuum...Even though switching in vacuum is a technology with almost 100 years of history,its recent develop-ments are still changing the future of power transmission and distribution systems.First,current switch-ing in vacuum is an eco-friendly technology compared to switching in SF 6 gas,which is the strongest greenhouse gas according to the Kyoto Protocol.Vacuum,an eco-friendly natural medium,is promising for reducing the usage of SF 6 gas in current switching in transmission voltage.Second,switching in vacuum achieves faster current interruption than existing alternating current(AC)switching technolo-gies.A vacuum circuit breaker(VCB)that uses an electromagnetic repulsion actuator is able to achieve a theoretical limit of AC interruption,which can interrupt a short-circuit current in the first half-cycle of a fault current,compared to the more common three cycles for existing current switching technologies.This can thus greatly enhance the transient stability of power networks in the presence of short-circuit faults,especially for ultra-and extra-high-voltage power transmission lines.Third,based on fast vacuum switching technology,various brilliant applications emerge,which are benefiting the power systems.They include the applications in the fields of direct current(DC)circuit breakers(CBs),fault current lim-iting,power quality improvement,generator CBs,and so forth.Fast vacuum switching technology is promising for controlled switching technology in power systems because it has low variation in terms of opening and closing times.With this controlled switching,vacuum switching technology may change the“gene”of power systems,by which power switching transients will become smoother.展开更多
A novel real time fast electron bremsstrahlung (FEB) diagnostic system based on the lutetium yttrium oxyorthosilicate scintillators (LYSO) and silicon photomultipliers (SiPM) has been developed for tokamak.The diagnos...A novel real time fast electron bremsstrahlung (FEB) diagnostic system based on the lutetium yttrium oxyorthosilicate scintillators (LYSO) and silicon photomultipliers (SiPM) has been developed for tokamak.The diagnostic system is dedicated to study the FEB emission in the hard x-ray (HXR) energy range between 10 and 200 keV during the lower hybrid current drive.The system consists of a detection module and three data acquisition and processing (DAP)boards.The detection module consists of annulus LYSO-SiPM detector array and a 12-channel preamplifier module.The DAP boards upload the data to the host computer for displaying and storing through PXI bus.The time and space resolutions of the system are 10 ms and 4 cm,respectively.The experimental results can show the evolution over time and the spatial distribution of FEB.This paper presents the system performance and typical discharge results.展开更多
This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach s...This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach synthesizes two techniques: protograph LDPC codes and OFDM. One symbol of encoded information by protograph LDPC codes corresponds to one sub-carrier, namely the length of encoded information equals to the number of sub-carriers. The design of good protograph LDPC codes with short lengths is given, and the proposed proto- graph LDPC codes can be of fast encoding, which can reduce the encoding complexity and simplify encoder hardware implementa- tion. The proposed approach provides a higher coding gain in the Rayleigh fading channel. The simulation results in the Rayleigh fading channel show that the bit error rate (BER) performance of the proposed time-frequency codes is as good as random LDPC- OFDM codes and is better than Tanner LDPC-OFDM codes under the condition of different fading coefficients.展开更多
文摘A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.
基金supported by the Ministry of Science and Technology of China,No.2020AAA0109605(to XL)Meizhou Major Scientific and Technological Innovation PlatformsProjects of Guangdong Provincial Science & Technology Plan Projects,No.2019A0102005(to HW).
文摘Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.
基金financially supported by the National Natural Science Foundation of China(Nos.U1904173 and 52272219)the Key Research Projects of Henan Provincial Department of Education(No.19A150043)+2 种基金the Natural Science Foundation of Henan Province(Nos.202300410330 and 222300420276)the Nanhu Scholars Program for Young Scholars of Xinyang Normal Universitythe Xinyang Normal University Analysis&Testing Center。
文摘Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.
文摘A programmable high-accuracy system was proposed to collect and process telemetric fast varying signals,which consists of pre-circuit,analog-to-digital(A/D)conversion unit and signal collection and processing part.Performance analysis demonstrates that this novel telemetry-acquisition method is a potential solution to rapidly process fast varying signals and efficiently utilize telemetry channel.
基金Acknowledgements. This work was jointly supported by the Chinese Academy of Sciences through the International Partnership Creative Group entitled "The Climate System Model Development and Application Studies", the Major State Basic Research Development Program of China (973 Program) under Grant No. 2005CB321703, and the National Natural Science Foundation of China (Grant Nos. 40675050, 40221503, 40625014). The long-term integration of the coupled model was finished on the Lenovo DeepComp 6800 supercomputer at the Supercomputing Center of the Chinese Academy of Sciences, and the IBM SP690 at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The authors appreciate the contribution of Drs. R. C. Yu, Y. Q. Yu, H. L. Liu, W. P. Zheng, J. Li, X. G Xin, and Mrs. H. Wan, H. M. Li in the model development and validations.
文摘A fast version of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) climate system model is briefly documented. The fast coupled model employs a low resolution version of the atmospheric component Grid Atmospheric Model of IAP/LASG (GAMIL), with the other parts of the model, namely an oceanic component LASG/IAP Climate Ocean Model (LICOM), land component Common Land Model (CLM), and sea ice component from National Center for Atmospheric Research Community Climate System Model (NCAR CCSM2), as the same as in the standard version of LASG/IAP Flexible Global Ocean Atmosphere Land System model (FGOALS_g). The parameterizations of physical and dynamical processes of the atmospheric component in the fast version are identical to the standard version, although some parameter values are different. However, by virtue of reduced horizontal resolution and increased time-step of the most time-consuming atmospheric component, it runs faster by a factor of 3 and can serve as a useful tool for longterm and large-ensemble integrations. A 1000-year control simulation of the present-day climate has been completed without flux adjustments. The final 600 years of this simulation has virtually no trends in global mean sea surface temperatures and is recommended for internal variability studies. Several aspects of the control simulation's mean climate and variability are evaluated against the observational or reanalysis data. The strengths and weaknesses of the control simulation are evaluated. The mean atmospheric circulation is well simulated, except in high latitudes. The Asian-Australian monsoonal meridional cell shows realistic features, however, an artificial rainfall center is located to the eastern periphery of the Tibetan Plateau persists throughout the year. The mean bias of SST resembles that of the standard version, appearing as a "double ITCZ" (Inter-Tropical Convergence Zone) associated with a westward extension of the equatorial eastern Pacific cold tongue. The sea ice extent is acceptable but has a higher concentration. The strength of Atlantic meridional overturning is 27.5 Sv. Evidence from the 600-year simulation suggests a modulation of internal variability on ENSO frequency, since both regular and irregular oscillations of ENSO are found during the different time periods of the long-term simulation.
基金the National Natural Science Foundation of China (Grant No. 61403040)
文摘Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accuracy of the training samples. In order to reduce the errors of manual classification, an automatic clustering algorithm is proposed and applied to diagnose down-hole conditions of pumping systems. The spectral clustering (SC) is a new clustering algorithm, which is suitable for any data distribution. However, it is sensitive to initial cluster centers and scale parameters, and needs to predefine the cluster number. In order to overcome these shortcom- ings, we propose an automatic clustering algorithm, fast black hole-spectral clustering (FBH-SC). The FBH algo- rithm is used to replace the K-mean method in SC, and a CritC index function is used as the target function to automatically choose the best scale parameter and clus- tering number in the clustering process. Different simulation experiments were designed to define the relationship among scale parameter, clustering number, CritC index value, and clustering accuracy. Finally, an example is given to validate the effectiveness of the proposed algorithm.
基金supported by Open Fund of Key Laboratory of Bio-Macromolecular Evolution(No.2006B001)Foundation for outstanding academic team of Zoological Biology in Anhui Normal UniversitySpecial Foundation for Provincial Key Laboratories of Biotic Environment and Ecological Safety and Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province
文摘Changes in distribution density,morphology and secretory content of endocrine cells in the gastro-entero-pancreatic system of black-spotted frogs Rana nigromaculata before and after fasting were investigated using immunohistochemistry and antisera to six gut hormones.Six types of endocrine cells were detected in the digestive tract of Rana nigromaculata,including 5-hydroxytryptamine(5-HT),gastrin(GAS),somatostatin(SOM),glucagon(GLU),pancreatic polypeptide(PP)and vasoactive intestinal polypeptide(VIP)cells.After fasting,the density of 5-HT cells in the esophagus,cardia and fundus,GAS cells in the fundus and pylorus,PP cells in the fundus decreased significantly(P<0.01),while SOM cells in the cardia,GLU cells in the rectum increased significantly(P<0.01).The cytoplasmic processes of 5-HT cells became shorter or not detectable.The secretory content of GAS cells reduced in the cardia.The positive immunostaining reaction in the perinuclear region of SOM cells in the cardia,fundus and pylorus became weaker,while the staining intensity in the periphery of these cells became stronger.VIP cells were not detectable in the whole digestive tract after fasting.Five types of endocrine cells were found in the pancreas of Rana nigromaculata,including 5-HT,GAS,SOM,GLU and PP cells.After fasting,the density of 5-HT cells decreased slightly(P>0.05),while SOM,GAS,GLU and PP cells increased significantly(P<0.01).Furthermore,the secretory content of GLU cells increased significantly.Considering their functionalities,our results indicate that the changes of GEP endocrine cells in Rana nigromaculata responded adaptively to starvation-induced stress.
基金based on the results obtained from a project(JPNP19002)commissioned by the New Energy and Industrial Technology Development Organization(NEDO)supported by the TEPCO Power Grid,Inc.+9 种基金Tohoku Electric Power Network Co.,Inc.Chubu Electric Power Co.,Inc.Chubu Electric Power Grid Co.,Inc.Kansai Transmission and Distribution,Inc.Chugoku Electric Power Transmission and Distribution Co.,Inc.Kyushu Electric Power Co.,Inc.Kyushu Electric Power Transmission and Distribution Co.,Inc.Takaoka Toko Co.,Ltd.Tokushima UniversityOsaka Prefectural University。
文摘This paper reports on the status of technology development under a national project launched in 2019 to address the problem of decreased system inertia associated with the large-scale integration of renewable energy.The project comprises two parts:the development of a system inertia observation technology using a continuous monitoring system to observe inertia and development of an inverter equipped with a function to provide virtual inertia as a countermeasure device.Utilizing both these efforts,the project aims to facilitate the introduction of renewable energy in the future with minimum restrictions.It was confirmed that the trend of inertia observed with the developed method was generally the same as that of the total inertia of synchronous machines observed by an electric utility.The effectiveness of the countermeasure device in reducing the frequency swing during a disturbance was confirmed through evaluation tests.
基金Sponsored bythe National Natural Science Fundation of China (50122148)
文摘A novel adaptive noise cancellation method for wheel speed signal of the anti-lock braking system/ anti-slip regulation(ABS/ASR) control system is proposed. Based on the spectrum distribution of vehicle's wheel speed signal got from fast Fourier transform under various conditions, the high-pass filter is used to deal with original wheel speed signals sampled to get reference noise signal and the original wheel speed signals are used as adaptive filter's desired outputs. The difference between original signals and reference noise signals is used as the error signal for the adaptive FIR filter and also used as the whole adaptive noise cancellation system's final output. This method can obtain the noise signal on-line and is easy to use for. real control system, which is useful to improve the performance of integrate system ABS/ASR.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60901074,51075092,61005076,and 61175107)the National High Technology Research and Development Program of China(Grant No.2007AA042105)the Natural Science Foundation of Heilongjiang Province,China(Grant No.E200903)
文摘This paper develops a fast filtering algorithm based on vibration systems theory and neural information exchange approach. The characters, including the derivation process and parameter analysis, are discussed and the feasibility and the effectiveness are testified by the filtering performance compared with various filtering methods, such as the fast wavelet transform algorithm, the particle filtering method and our previously developed single degree of freedom vibration system filtering algorithm, according to simulation and practical approaches. Meanwhile, the comparisons indicate that a significant advantage of the proposed fast filtering algorithm is its extremely fast filtering speed with good filtering perfi^rmance. Further, the developed fast filtering algorithm is applied to the navigation and positioning system of the micro motion robot, which is a high real-time requirement for the signals preprocessing. Then, the preprocessing data is used to estimate the heading angle error and the attitude angle error of the micro motion robot. The estimation experiments illustrate the high practicality of the proposed fast filtering algorithm.
基金Project(51034009)supported by the National Natural Science Foundation of China
文摘A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated.Based on the different cooling mechanisms,a serial of mathematic models were established to describe the relationship between water flow and spraying pressure and the relationship between water spraying heat flux and layout of nozzles installed on the top and bottom cooling headers.Model parameters were validated by measured data.Heat transfer models including air convection model,heat radiation model and water cooling capacity model were detailedly introduced.In addition,effects on cooling capacity by water temperature and different valve patterns were also presented.Finally,the comparison results from UFC used or not have been provided with respect to temperature evolution and mechanical properties of Q235B steel grade with thickness of 7.8 mm.Since online application of the sophisticated CTC process control system based on these models,run-out table cooling control system has been running stably and reliably to produce resource-saving,low-cost steels with smaller grain size.
基金supported by the National Defense Pre-research Project of China during the 12th Five-year Plan Period(4040570201)Innovation Project of Military Academy(ZYX14060014)
文摘This paper presents the design of an experimental battlefield dynamic scanning and staring imaging system based on a fast steering mirror(FSM), which is capable of real-time monitoring of hot targets and wide-area reconnaissance of hot regions. First,the working principle and working sequence of the FSM are briefly analyzed. The mathematical model of the FSM system is built by modeling its dynamic and electrical properties, and the rationality of the model is validated by means of model identification. Second,the influence of external sources of disturbance such as the carrier and moment on the control precision of the FSM is effectively suppressed by the jointly controlling of proportional integral(PI)and disturbance observer(DOB), thus realizing a high precision and strong robustness control of the FSM system. Then, this paper designs an experimental prototype and introduces a special optical structure to enable the infrared camera to share the FSM with the visible light camera. Finally, the influence of the velocity difference between the mirror of the FSM and the rotating platform on the imaging quality of the system is experimentally analyzed by using the image sharpness evaluation method based on point sharpness. A good dynamic scanning and staring imaging result is achieved when the velocity of these two components correspond.
文摘The ambitious global targets on decarbonization present the need for massive integration of renewable generation in power systems,resulting in a significant decrease in the system inertia.In addition to the reduction in system inertia,the transmission system in Great Britain(GB)faces some unique challenges owing to its relatively small capacity,while being decoupled from other transmission systems and with the renewable resources largely non-uniformly distributed across the system.This paper presents opinions and insights on the challenges associated with frequency control in a low-inertia system and the potential solutions from a GB perspective.In this paper,we focus on three main techniques that act over different time scales:synchronous condensers,inertia emulation,and fast frequency response.We evaluate their relative advantages and limitations with learnings from recent research and development projects in GB,along with the opinions on their roles in addressing the frequency control challenges in future low-inertia systems.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.
基金supported by the National Natural Science Foundation of China(60972056)the Innovation Foundation of Shanghai Education Committee(09ZZ89)Shanghai Leading Academic Discipline Project and STCSM(S30108and08DZ2231100)
文摘A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequency domains is given.The pilots in accordance with a novel random pilot matrix in both time and frequency domains are sent to measure the delay-Doppler sparsity channel.The relatively nonzero channel coefficients are tracked by random pilots at a sampling rate significantly below the Nyquist rate.The sparsity channels are estimated from a very limited number of channel measurements by the basis pursuit algorithm.The proposed algorithm can effectively improve the channel estimation performance when the number of pilot symbols is reduced with improvement of throughput efficiency.
基金Supported by the National Natural Science Foundation of China(No. 49771062), by a grant forUniversity Key Teacher of China, an
文摘This paper presents a multi-antenna GPS based system developed for local continuous deformation monitoring. Due to a large number of points that needs to be monitored, the standard approaches of using permanent GPS receiver arrays will cause high cost. It eventually becomes the limiting factor for large-scale use of GPS in these application areas. Multi-antenna GPS system allows a number of GPS antennas to be linked to one GPS receiver by a specially designed electronic component, i. e. the so-called GPS multi-antenna switch (GMS), The receiver takes data sequentially from each of the antennas attached to the receiver. A distinctive advantage of the approach is that one GPS receiver can be used to monitor more than one point. The cost per monitored point (i. e. the expenses of hardware) is therefore significantly reduced.
基金supported in part by the National Natural Science Foundation of China under Grant 51507188Doctoral Research Startup Foundation of Hubei University of Technology under Grant XJ2021000302。
文摘The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of the system,a fast non-singular end sliding mode(FNTSM)surface function based on traditional NTSM control is developed.The theoretical analysis proves that the FNTSM surface function has a faster dynamic response and more finite-time convergence.In addition,for the self-vibration problem caused by high sliding mode switching gain,an FNTSM control method with anti-disturbance capability was designed based on the linear disturbance observer(DO),i.e.the FNTSMDO method was employed to devise the PMSM speed regulator.The comparative simulation and experiment results with traditional PI control and NTSM control methods indicate that the FNTSMDO method could improve the dynamic performance and anti-interference of the system.
基金supported in part by the National Natural Science Foundation of China (51937009 and 51877166)the Key Research and Development Program of Shaanxi Province (2019ZDLGY18-04)
文摘Even though switching in vacuum is a technology with almost 100 years of history,its recent develop-ments are still changing the future of power transmission and distribution systems.First,current switch-ing in vacuum is an eco-friendly technology compared to switching in SF 6 gas,which is the strongest greenhouse gas according to the Kyoto Protocol.Vacuum,an eco-friendly natural medium,is promising for reducing the usage of SF 6 gas in current switching in transmission voltage.Second,switching in vacuum achieves faster current interruption than existing alternating current(AC)switching technolo-gies.A vacuum circuit breaker(VCB)that uses an electromagnetic repulsion actuator is able to achieve a theoretical limit of AC interruption,which can interrupt a short-circuit current in the first half-cycle of a fault current,compared to the more common three cycles for existing current switching technologies.This can thus greatly enhance the transient stability of power networks in the presence of short-circuit faults,especially for ultra-and extra-high-voltage power transmission lines.Third,based on fast vacuum switching technology,various brilliant applications emerge,which are benefiting the power systems.They include the applications in the fields of direct current(DC)circuit breakers(CBs),fault current lim-iting,power quality improvement,generator CBs,and so forth.Fast vacuum switching technology is promising for controlled switching technology in power systems because it has low variation in terms of opening and closing times.With this controlled switching,vacuum switching technology may change the“gene”of power systems,by which power switching transients will become smoother.
基金National Natural Science Foundation of China (No. 11575184).
文摘A novel real time fast electron bremsstrahlung (FEB) diagnostic system based on the lutetium yttrium oxyorthosilicate scintillators (LYSO) and silicon photomultipliers (SiPM) has been developed for tokamak.The diagnostic system is dedicated to study the FEB emission in the hard x-ray (HXR) energy range between 10 and 200 keV during the lower hybrid current drive.The system consists of a detection module and three data acquisition and processing (DAP)boards.The detection module consists of annulus LYSO-SiPM detector array and a 12-channel preamplifier module.The DAP boards upload the data to the host computer for displaying and storing through PXI bus.The time and space resolutions of the system are 10 ms and 4 cm,respectively.The experimental results can show the evolution over time and the spatial distribution of FEB.This paper presents the system performance and typical discharge results.
基金supported by the Beijing Natural Science Foundation of China (4102050)the National Natural Science of Foundation of China (NSFC)-Korea Science and Engineering Foundation (KOSF) Joint Research Project of China and Korea (60811140343)
文摘This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach synthesizes two techniques: protograph LDPC codes and OFDM. One symbol of encoded information by protograph LDPC codes corresponds to one sub-carrier, namely the length of encoded information equals to the number of sub-carriers. The design of good protograph LDPC codes with short lengths is given, and the proposed proto- graph LDPC codes can be of fast encoding, which can reduce the encoding complexity and simplify encoder hardware implementa- tion. The proposed approach provides a higher coding gain in the Rayleigh fading channel. The simulation results in the Rayleigh fading channel show that the bit error rate (BER) performance of the proposed time-frequency codes is as good as random LDPC- OFDM codes and is better than Tanner LDPC-OFDM codes under the condition of different fading coefficients.