期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Einstein-Rosen Bridge (ER), Einstein-Podolsky-Rosen Experiment (EPR) and Zero Measure Rindler-KAM Cantorian Spacetime Geometry (ZMG) Are Conceptually Equivalent 被引量:1
1
作者 Mohamed S. El Naschie 《Journal of Quantum Information Science》 2016年第1期1-9,共9页
By viewing spacetime as a transfinite Turing computer, the present work is aimed at a generalization and geometrical-topological reinterpretation of a relatively old conjecture that the wormholes of general relativity... By viewing spacetime as a transfinite Turing computer, the present work is aimed at a generalization and geometrical-topological reinterpretation of a relatively old conjecture that the wormholes of general relativity are behind the physics and mathematics of quantum entanglement theory. To do this we base ourselves on the comprehensive set theoretical and topological machinery of the Cantorian-fractal E-infinity spacetime theory. Going all the way in this direction we even go beyond a quantum gravity theory to a precise set theoretical understanding of what a quantum particle, a quantum wave and quantum spacetime are. As a consequence of all these results and insights we can reason that the local Casimir pressure is the difference between the zero set quantum particle topological pressure and the empty set quantum wave topological pressure which acts as a wormhole “connecting” two different quantum particles with varying degrees of entanglement corresponding to varying degrees of emptiness of the empty set (wormhole). Our final result generalizes the recent conceptual equation of Susskind and Maldacena ER = EPR to become ZMG = ER = EPR where ZMG stands for zero measure Rindler-KAM geometry (of spacetime). These results were only possible because of the ultimate simplicity of our exact model based on Mauldin-Williams random Cantor sets and the corresponding exact Hardy’s quantum entanglement probability P(H) = where is the Hausdorff dimension of the topologically zero dimensional random Cantor thin set, i.e. a zero measure set and . On the other hand the positive measure spatial separation between the zero sets is a fat Cantor empty set possessing a Hausdorff dimension equal while its Menger-Urysohn topological dimension is a negative value equal minus one. This is the mathematical quintessence of a wormhole paralleling multiple connectivity in classical topology. It is both physically there because of the positive measure and not there because of the negative topological dimension. 展开更多
关键词 Zero Measure Thin cantor set fat cantor set cantorian Fractal KAM Spacetime Quantum Gravity Casimir Pressure E-Infinity Theory
下载PDF
极限函数黎曼可积性注记
2
作者 许宁 《南通大学学报(自然科学版)》 CAS 2014年第3期69-74,共6页
研究了光滑收敛函数序列的极限函数不可积的存在性.运用稠密性论证、函数光滑化技术、胖康托集的构造技术,结合函数的平移特性和黎曼可积的勒贝格准则,获得了一列有界的光滑收敛函数序列,其极限函数在黎曼积分意义下不可积,并给出构造... 研究了光滑收敛函数序列的极限函数不可积的存在性.运用稠密性论证、函数光滑化技术、胖康托集的构造技术,结合函数的平移特性和黎曼可积的勒贝格准则,获得了一列有界的光滑收敛函数序列,其极限函数在黎曼积分意义下不可积,并给出构造极限函数不可积的一般方法. 展开更多
关键词 极限函数 黎曼积分 光滑函数 胖康托集
下载PDF
积分概念的演变
3
作者 许宁 《科技与创新》 2014年第2期95-98,共4页
众所周知,勒贝格(Lebesgue)积分是黎曼(Riemann)积分的推广,但人们很少解释这种推广为什么重要以及为什么它是纯粹和应用数学家的有力武器。勒贝格积分与黎曼积分相比,其重要性至少体现在两个方面:一是这两个理论的控制收敛定理,另一个... 众所周知,勒贝格(Lebesgue)积分是黎曼(Riemann)积分的推广,但人们很少解释这种推广为什么重要以及为什么它是纯粹和应用数学家的有力武器。勒贝格积分与黎曼积分相比,其重要性至少体现在两个方面:一是这两个理论的控制收敛定理,另一个是赋范线性空间的完备性。通过一些简洁的例子和讨论来阐明这些论点。 展开更多
关键词 黎曼积分 勒贝格积分 cantor 发展演变
下载PDF
平面的一类开域上不存在加倍测度
4
作者 夏云晶 《湖北大学学报(自然科学版)》 CAS 北大核心 2007年第4期332-334,345,共4页
通过直线上的一类胖Cantor集构造了[0,1]~2上的一类开域,使得在这类开域上不存在加倍测度,并且构造一个R^2上的有界若当闭域Ω,使得Lebesgue测度L在其上的限制不是加倍测度.
关键词 加倍测度 cantor LEBESGUE测度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部