The fatigue crack initiation and early propagation behavior of 2A97 Al-Li alloy was studied. The smooth specimens were fatigued at room temperature under constant maximum stress control when stress ratio (R) is 0.1 ...The fatigue crack initiation and early propagation behavior of 2A97 Al-Li alloy was studied. The smooth specimens were fatigued at room temperature under constant maximum stress control when stress ratio (R) is 0.1 and frequency (f) is 40 Hz. Microstructure observations were examined by optical microscopy, transmission electron microscopy, scanning electron microscopy and electron back scattered diffusion, in order to investigate the relationship between microstructure and fatigue crack initiation and early propagation behavior of 2A97 alloy. The results show that the fatigue cracks are predominantly initiated at inclusions and coarsen secondary phases on the surface of 2A97 alloy. The fatigue crack early propagation behavior of 2A97 alloy is predominantly influenced by the interactions between grain structure and dislocations or persistent slip bands (PSBs). When the misorientation of two neighbouring grains is close to the orientations of the favorable slip plane within these two grains, high-angle grain boundary severely hinders the PSBs passing through, and thus leads to crack bifurcation and deflection.展开更多
Fatigue crack initiation at different stress levels was studied. Two modes of fatigue crack initiation are found. One is that fatigue crack initiates in the alloy matrix away from the Nd rich particles, which is ofte...Fatigue crack initiation at different stress levels was studied. Two modes of fatigue crack initiation are found. One is that fatigue crack initiates in the alloy matrix away from the Nd rich particles, which is often related to the cracking of equiaxed α particles. The other is that fatigue crack initiation is associated with the Nd rich particles. When the maximum nominal stress is less than 450 MPa, all of fatigue cracks initiate in the matrix of the alloy. With the increasing of the applied stress, the probability of the second mode increases gradually.展开更多
Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on th...Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior.展开更多
The corrosion fatigue behavior of epoxy-coated Mg-3Al-1Zn alloy in gear oil was investigated. The corrosion and the fracture surfaces after fatigue test were analyzed by scanning electron microscopy(SEM) and the corro...The corrosion fatigue behavior of epoxy-coated Mg-3Al-1Zn alloy in gear oil was investigated. The corrosion and the fracture surfaces after fatigue test were analyzed by scanning electron microscopy(SEM) and the corrosion compositions were measured by energy-dispersive spectrometry(EDS). The fatigue properties and the crack initiation mechanisms of the specimens before and after epoxy coating treatment were discussed. The results indicate that the fatigue limit after epoxy coating treatment in gear oil is higher than that of the uncoated specimens. The epoxy coating is an excellent way to prevent direct contact between the Mg-3Al-1Zn alloy and surrounding environments. The mechanical properties of the epoxy coating layer are lower than that of magnesium alloy, which is the main reason for the fatigue crack initiation on the epoxy coating layer. In addition, the gear oil lubrication could lead to the flaking off of the epoxy-coated layer.展开更多
The mechanism of oxide inclusions in fatigue crack initiation in the very-high cycle fatigue(VHCF)regime was clarified by subjecting bearing steels deoxidized by Al(Al-deoxidized steel)and Si(Si-deoxidized steel)to ul...The mechanism of oxide inclusions in fatigue crack initiation in the very-high cycle fatigue(VHCF)regime was clarified by subjecting bearing steels deoxidized by Al(Al-deoxidized steel)and Si(Si-deoxidized steel)to ultrasonic tension-compression fatigue tests(stress ratio,R=−1)and analyzing the characteristics of the detected inclusions.Results show that the main types of inclusions in Si-and Al-deoxidized steels are silicate and calcium aluminate,respectively.The content of calcium aluminate inclusions larger than 15μm in Si-deoxidized steel is lower than that in Al-deoxidized steel,and the difference observed may be attributed to different inclusion generation processes during melting.Despite differences in their cleanliness and total oxygen contents,the Si-and Al-deoxidized steels show similar VHCF lives.The factors causing fatigue failure in these steels reveal distinct differences.Calcium aluminate inclusions are responsible for the cracks in Al-deoxidized steel.By comparison,most fatigue cracks in Si-deoxidized steel are triggered by the inhomogeneity of a steel matrix,which indicates that the damage mechanisms of the steel matrix can be a critical issue for this type of steel.A minor portion of the cracks in Si-deoxidized steel could be attributed to different types of inclusions.The mechanisms of fatigue fracture caused by calcium aluminate and silicate inclusions were further analyzed.Calcium aluminate inclusions first separate from the steel matrix and then trigger crack generation.Silicate inclusions and the steel matrix are closely combined in a fatigue process;thus,these inclusions have mild effects on the fatigue life of bearing steels.Si/Mn deoxidation is an effective method to produce high-quality bearing steel with a long fatigue life and good liquid steel fluidity.展开更多
Based on probabilistic fracture mechanics approach, a new concept of material initial fatigue quality (MIFQ) is developed. Then, the relation between S-N curve and crack propagation curve is studied. From the study,...Based on probabilistic fracture mechanics approach, a new concept of material initial fatigue quality (MIFQ) is developed. Then, the relation between S-N curve and crack propagation curve is studied. From the study, a new durability analysis method is presented. In this method, S-N curve is used to determine crack growth rate under constant amplitude loading and evaluate the effects of different factors on durability and then the structural durability is analyzed. The tests and analyses indicate that this method has lower dependence on testing, and higher accuracy, reliability and generality and is convenient for application.展开更多
Gigacycle fatigue behaviors of two SNCM439 steels with different tensile strengthes were experimentally studied by rotating bending tests,to investigate the effects of the tensile strength obtained by different heat t...Gigacycle fatigue behaviors of two SNCM439 steels with different tensile strengthes were experimentally studied by rotating bending tests,to investigate the effects of the tensile strength obtained by different heat treatment processes on very high cycle fatigue failure mechanisms.The material with higher tensile strength of 1 710 MPa exhibited typical gigacycle fatigue failure characteristics,whereas one with lower tensile strength of 1 010 MPa showed only traditional fatigue limit during the tests and no gigacycle failure could be found even when the specimen ran up to more than 10 8 cycles.Metallographic and fractographic analysis were carried out by an optical microscope (OM) and scanning electron microscope (SEM).It showed two different crack initiation mechanisms that for the specimen with lower tensile strength the crack prefers surface initiation and for that with higher strength the crack initiates from subsurface inclusions revealed by a fish-eye like microstructure.展开更多
Transverse crack often occurs in the trailing edge region of the bladewhen subjected to the excessive edgewise fatigue load.In this paper a refined model was established through local mesh refinement methods in order ...Transverse crack often occurs in the trailing edge region of the bladewhen subjected to the excessive edgewise fatigue load.In this paper a refined model was established through local mesh refinement methods in order to investigate the initiation mechanism of crack and its extension in blade trailing edge.The material stress around the crack in trailing edge region under different thicknesses is calculated based on the fracture mechanics theory.The factors affecting the fatigue robustness of blade trailing edge are concluded by investigating the results of finite element analysis and coupons test.Compared with the laminate,the lower fatigue strength of the adhesive is the cause of the transverse crack of the adhesive joint at the trailing edge.The increase of the adhesive thickness at the adhesive joint will significantly increase the stress concentration factor at the crack region and accelerate the crack extension of the laminate.In final,a practical design scheme to prevent crack initiation is given for the manufacture of the wind turbine blade.展开更多
Based on Tanaka and Mura’s fatigue model and Griffith theory for fracture,an energy-equilibrium model was proposed to explain the complex stress effect on fatigue behavior.When the summation of the elastic strain ene...Based on Tanaka and Mura’s fatigue model and Griffith theory for fracture,an energy-equilibrium model was proposed to explain the complex stress effect on fatigue behavior.When the summation of the elastic strain energy release and the stored strain energy of accumulated dislocations reach the surface energy of a crack,the fatigue crack will initiate in materials.According to this model,for multiaxial stress condition,the orientation of the crack initiation and the initiation life can be deduced from the energy equilibrium equation.For the uniaxial fatigue loading with mean stress,the relation between the maximum stress or the minimum stress and the stress amplitude is in agreement with an ellipse equation on the constant life diagram.If the ratio of the mean stress to stress amplitude is less than a critical value-0.17,and the stress amplitude keeps constant,the fatigue crack initiation life will decrease with the increase of the compress mean stress.In this model,the mean stress does not cause damage accumulation with the fatigue cycles in crack initiation.For this reason,the loading sequence of different load levels would induce the cumulative damage to deviate from the Palmgren-Miner cumulative damage rule.The procedure of estimating the damage under random loading is also discussed.展开更多
To investigate fatigue crack initiation characteristics of A1-Zn-Mg alloy welded joint, notched specimens were used in fatigue test for the base metal, welding bead and heat affected zone (HAZ). The fatigue fracture...To investigate fatigue crack initiation characteristics of A1-Zn-Mg alloy welded joint, notched specimens were used in fatigue test for the base metal, welding bead and heat affected zone (HAZ). The fatigue fracture surface near the fatigue crack initiation site was observed by scanning electron microscope (SEM). The results show that the differences of fatigue crack initiation life among base metal, welding bead and HAZ are not obvious. Inhomogeneity in microstructure and mechanical performance of HAZ influences the fatigue crack initiation life. The ratio of fatigue crack initiation life (Ni) to fatigue failure life (Nf) for the base metal, welding bead and HAZ of A7N01 aluminium alloy welded joint are 26.32%, 40.21% and 60.67%, respectively. Fatigue crack initiation life can be predicted using a uniform model. Observation of fatigue fracture surfaces shows that for the welding bead a fatigue crack initiates from the smooth surface due to the welding process, the blowhole in HAZ causes fatigue crack and the crushed second phase particles play an important role in fatigue crack initiation for the base metal.展开更多
The crack initiation mechanism of a Z3CN20.09M duplex stainless steel (DSS) during corrosion fatigue (CF) in water and air at 290 ℃ was investigated by using a CF cracking machine and a scanning electron microsco...The crack initiation mechanism of a Z3CN20.09M duplex stainless steel (DSS) during corrosion fatigue (CF) in water and air at 290 ℃ was investigated by using a CF cracking machine and a scanning electron microscopy (SEM). The cracks were initiated successively at the persistent stip bands (PSBs), phase boundaries (PBs) and pitting corrosion points (PCPs) of the specimens when they were tested in water at 290 ℃, while in airat 290 ℃ the cracks were only initiated at the PSBs and PBs. And the cracks were found mainly to initiate at the PSBs and PBs when the specimens were tested in water and air at 290 ℃, respectively. The results also reveal that the cracks were likely to be initiated at the first 20% of fatigue life of the specimens tested in water at 290 ℃. However, the cracks were not found until 50% of fatigue life when tested in air at 290 ℃. Moreover, the crack numbers of the specimens tested in water at 290 ℃ were much more than those tested in air at 290 ℃.展开更多
Fully-reversed cyclic deformation of a pure Zr(a thickness of 17 mm)was conducted at two different strain amplitudes(0.4%and 0.8%)to investigate the deformation and crack initiation behaviors based on slip trace analy...Fully-reversed cyclic deformation of a pure Zr(a thickness of 17 mm)was conducted at two different strain amplitudes(0.4%and 0.8%)to investigate the deformation and crack initiation behaviors based on slip trace analysis.It was found that prismaticaslip with a higher Schmid Factor(m>0.4)was the dominant deformation mode.The grains containing persistent slip bands(PSBs)tended to go towards[1210]pole and the Schmid Factor had a critical value of 0.4 above which prismatic and pyramidal slip were dominant.Fatigue cracks were mainly initiated at PSBs and grain boundaries(GBs).It showed that 61.1%of the cracks were PSB cracks under a strain amplitude of 0.4%,while it decreased to 53.5%at a strain amplitude of 0.8%.PSB cracks were mainly parallel to prismaticaslip with higher Schmid Factor while some cracks tended to be initiated at GBs with higher misorientation angles.The interaction of PSBs with GBs would result in strain transferring to the neighboring grain.Strain transfer was more likely to occur at the condition of the higher geometrical compatibility factor m,and lower residual Burgers vectorb,which could reduce strain localization.展开更多
The fatigue and fracture behavior of nickel-based superalloy Inconel 718 was investigated up to the very high cycle regime under rotary bending tests at room temperature. It was found that this superalloy can still fr...The fatigue and fracture behavior of nickel-based superalloy Inconel 718 was investigated up to the very high cycle regime under rotary bending tests at room temperature. It was found that this superalloy can still fracture after exceeding 107 cycles. Fractographic analysis revealed that there was a transition from fatigue crack initiation at multi-sites to single initiation with decreasing stress levels. The fracture surface can be divided into four areas according to the appearance, associated with fracture mechanics analysis of the corresponding stress intensity factors. The fracture mechanism dominant in each area was disclosed by scanning electron microscope examination and analyzed in comparison with those obtained from the crack growth tests. Subsequently, life prediction modeling was proposed by estimating the crack initiation and propagation stage respectively. It was found that Chan (2003)'s model for initiation life and the Paris law for growth life can provide comparable predictions against the experimental life.展开更多
Fatigue cracking behavior from a notch was investigated at room temperature for Ti-6.SAI-3.5Mo-1.5Zr- 0.3Si (TClI) alloys with four different microstructures obtained at different cooling rates from the β transus t...Fatigue cracking behavior from a notch was investigated at room temperature for Ti-6.SAI-3.5Mo-1.5Zr- 0.3Si (TClI) alloys with four different microstructures obtained at different cooling rates from the β transus temperature. It was found that the alloy with lamellar structures consisting of α/β lamellae or acicular α' martensite laths had a higher fatigue crack initiation threshold from the notch, while the bimodal structure with coarse a grain had a lower fatigue cracking resistance. The alloy with α/β lamellar structure showed a higher fatigue crack growth resistance. The length scales of the microstructures were characterized to correlate with fatigue cracking behavior. Fatigue cracking mechanism related to microstructures was discussed.展开更多
In fatigue critical applications, Ti-10V-2Fe-3Al alloy components are expected to endure cyclic loading with cycles above 109. To assess their operating safety, S-N relations of Ti-10V-2Fe-3Al alloy in very high cycle...In fatigue critical applications, Ti-10V-2Fe-3Al alloy components are expected to endure cyclic loading with cycles above 109. To assess their operating safety, S-N relations of Ti-10V-2Fe-3Al alloy in very high cycle fatigue (VHCF) regime are of concern and have been investigated in this work. Fatigue behavior including S-N curves and crack initiation mechanisms is reported. Two transitions of fatigue crack initi- ation mechanism, from internal crack initiation to surface crack initiation and from αp cleavage to αS/β decohesion, occur when the stress ratio (R) and stress level are reduced. Fatigue limits exist at Nr = 6×10^7 cycles for all stress ratios except for 0.5. In the VHCF regime two kinds of internal crack initiation mechanisms exist, i.e., coalescence of cluster of αp facets and αS/β decohesion. Their mutual competition depends on the stress ratio and can be interpreted in terms of different stress character required for promotion on different internal crack initiation mechanism. Small crack propagation is discussed to be life controlling process under the stress ratio range from -0.5 to 0.1 during VHCF regime while under the stress ratio 0.5 VHCF, life almost refers to the life required for crack initiation.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
Damage accumulation and failure behaviors are crucial concerns during the design and service of a critical component, leading researchers and engineers to thoroughly identifying the crack evolution. Third-generation s...Damage accumulation and failure behaviors are crucial concerns during the design and service of a critical component, leading researchers and engineers to thoroughly identifying the crack evolution. Third-generation synchrotron radiation X-ray computed microtomo- graphy can be used to detect the inner damage evolution of a large-density material or component. This paper provides a brief review of studying the crack initiation and propagation inside lightweight materials with advanced synchrotron three-dimensional (3D) X-ray imaging, such as aluminum materials. Various damage modes under both static and dynamic loading are elucidated for pure aluminum, aluminum alloy matrix, aluminum alloy metal matrix composite, and aluminum alloy welded joint. For aluminum alloy matrix, metallurgical defects (porosity, void, inclusion, precipitate, etc.) or artificial defects (notch, scratch, pit, etc.) strongly affect the crack initiation and propagation. For aluminum alloy metal matrix composites, the fracture occurs either from the particle debonding or voids at the particle/matrix interface, and the void evolution is closely related with fatigued cycles. For the hybrid laser welded aluminum alloy, fatigue cracks usually initiate from gas pores located at the surface or sub-surface and gradually propagate to a quarter ellipse or a typical semi-ellipse profile.展开更多
Two methods currently available for evaluating the probability of Multiple Site Damage(MSD)occurrence were studied in this paper.One of the methods is a probabilistic analysis approach based on the statistical theory ...Two methods currently available for evaluating the probability of Multiple Site Damage(MSD)occurrence were studied in this paper.One of the methods is a probabilistic analysis approach based on the statistical theory and fatigue characteristics of each structural detail,and the other is an approach which defines the initial damage scenario by means of Monte-Carlo simulation,and multiple initial crack scenarios are randomly generated.A modified method based on the Monte-Carlo simulation was proposed in this paper,in which the random fluctuation of the stress was considered to give more accurate evaluation results.In the presented method,the probability of MSD occurrence in a structural element containing multiple details was calculated based on the Monte-Carlo simulation and the p-S-N curve of a single structural detail.Fatigue tests were accomplished using specimens containing 21-similar-details to obtain the fatigue life corresponding to MSD occurrence.Tests on single-detail specimens and static calibration tests were also conducted to get the basic fatigue properties of the material and the degree of stress fluctuation.The aforementioned three methods were compared and validated via the test results.The influence of the stress random fluctuation degree on the probability of MSD occurrence and influence of the distribution types on evaluating the MSD occurrence probability were discussed.展开更多
文摘The fatigue crack initiation and early propagation behavior of 2A97 Al-Li alloy was studied. The smooth specimens were fatigued at room temperature under constant maximum stress control when stress ratio (R) is 0.1 and frequency (f) is 40 Hz. Microstructure observations were examined by optical microscopy, transmission electron microscopy, scanning electron microscopy and electron back scattered diffusion, in order to investigate the relationship between microstructure and fatigue crack initiation and early propagation behavior of 2A97 alloy. The results show that the fatigue cracks are predominantly initiated at inclusions and coarsen secondary phases on the surface of 2A97 alloy. The fatigue crack early propagation behavior of 2A97 alloy is predominantly influenced by the interactions between grain structure and dislocations or persistent slip bands (PSBs). When the misorientation of two neighbouring grains is close to the orientations of the favorable slip plane within these two grains, high-angle grain boundary severely hinders the PSBs passing through, and thus leads to crack bifurcation and deflection.
文摘Fatigue crack initiation at different stress levels was studied. Two modes of fatigue crack initiation are found. One is that fatigue crack initiates in the alloy matrix away from the Nd rich particles, which is often related to the cracking of equiaxed α particles. The other is that fatigue crack initiation is associated with the Nd rich particles. When the maximum nominal stress is less than 450 MPa, all of fatigue cracks initiate in the matrix of the alloy. With the increasing of the applied stress, the probability of the second mode increases gradually.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.12072212 and 11832007)the National Key Research and Development Program of China(No.2018YFE0307104)the Applied Basic Research Programs of Sichuan Province(No.2021YJ0071).We also highly appreciate the help of Dr.Yan Li from the Department of Mechanics,Sichuan University.
文摘Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior.
基金Projects(51001079,21201129,51208333,51374151)supported by the National Natural Science Foundation of ChinaProject(201101102002)supported by the Natural Science Foundation of Shanxi Province,China+1 种基金Project(20100471586)supported by the China Postdoctoral Science FoundationProject(20091402110010)supported by the Doctoral Fund of Ministry of Education of China
文摘The corrosion fatigue behavior of epoxy-coated Mg-3Al-1Zn alloy in gear oil was investigated. The corrosion and the fracture surfaces after fatigue test were analyzed by scanning electron microscopy(SEM) and the corrosion compositions were measured by energy-dispersive spectrometry(EDS). The fatigue properties and the crack initiation mechanisms of the specimens before and after epoxy coating treatment were discussed. The results indicate that the fatigue limit after epoxy coating treatment in gear oil is higher than that of the uncoated specimens. The epoxy coating is an excellent way to prevent direct contact between the Mg-3Al-1Zn alloy and surrounding environments. The mechanical properties of the epoxy coating layer are lower than that of magnesium alloy, which is the main reason for the fatigue crack initiation on the epoxy coating layer. In addition, the gear oil lubrication could lead to the flaking off of the epoxy-coated layer.
基金This work was financially supported by the National Natural Science Foundation of China(No.51774031)the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-026A1)the State Key Laboratory of Advanced Metallurgy Foundation(No.41620001).
文摘The mechanism of oxide inclusions in fatigue crack initiation in the very-high cycle fatigue(VHCF)regime was clarified by subjecting bearing steels deoxidized by Al(Al-deoxidized steel)and Si(Si-deoxidized steel)to ultrasonic tension-compression fatigue tests(stress ratio,R=−1)and analyzing the characteristics of the detected inclusions.Results show that the main types of inclusions in Si-and Al-deoxidized steels are silicate and calcium aluminate,respectively.The content of calcium aluminate inclusions larger than 15μm in Si-deoxidized steel is lower than that in Al-deoxidized steel,and the difference observed may be attributed to different inclusion generation processes during melting.Despite differences in their cleanliness and total oxygen contents,the Si-and Al-deoxidized steels show similar VHCF lives.The factors causing fatigue failure in these steels reveal distinct differences.Calcium aluminate inclusions are responsible for the cracks in Al-deoxidized steel.By comparison,most fatigue cracks in Si-deoxidized steel are triggered by the inhomogeneity of a steel matrix,which indicates that the damage mechanisms of the steel matrix can be a critical issue for this type of steel.A minor portion of the cracks in Si-deoxidized steel could be attributed to different types of inclusions.The mechanisms of fatigue fracture caused by calcium aluminate and silicate inclusions were further analyzed.Calcium aluminate inclusions first separate from the steel matrix and then trigger crack generation.Silicate inclusions and the steel matrix are closely combined in a fatigue process;thus,these inclusions have mild effects on the fatigue life of bearing steels.Si/Mn deoxidation is an effective method to produce high-quality bearing steel with a long fatigue life and good liquid steel fluidity.
基金National Natural Science Foundation of China (60472118) High-tech Research Project of Jiangsu Province (BG2004008)
文摘Based on probabilistic fracture mechanics approach, a new concept of material initial fatigue quality (MIFQ) is developed. Then, the relation between S-N curve and crack propagation curve is studied. From the study, a new durability analysis method is presented. In this method, S-N curve is used to determine crack growth rate under constant amplitude loading and evaluate the effects of different factors on durability and then the structural durability is analyzed. The tests and analyses indicate that this method has lower dependence on testing, and higher accuracy, reliability and generality and is convenient for application.
基金supported by funds of MHI Corporation,the National Natural Science Foundation of China (10872105)
文摘Gigacycle fatigue behaviors of two SNCM439 steels with different tensile strengthes were experimentally studied by rotating bending tests,to investigate the effects of the tensile strength obtained by different heat treatment processes on very high cycle fatigue failure mechanisms.The material with higher tensile strength of 1 710 MPa exhibited typical gigacycle fatigue failure characteristics,whereas one with lower tensile strength of 1 010 MPa showed only traditional fatigue limit during the tests and no gigacycle failure could be found even when the specimen ran up to more than 10 8 cycles.Metallographic and fractographic analysis were carried out by an optical microscope (OM) and scanning electron microscope (SEM).It showed two different crack initiation mechanisms that for the specimen with lower tensile strength the crack prefers surface initiation and for that with higher strength the crack initiates from subsurface inclusions revealed by a fish-eye like microstructure.
基金This research was funded by Natural Science Foundation of Shandong Province(Grant No.ZR2019MEE076)National Natural Science Foundation of China(Grant No.52075305).
文摘Transverse crack often occurs in the trailing edge region of the bladewhen subjected to the excessive edgewise fatigue load.In this paper a refined model was established through local mesh refinement methods in order to investigate the initiation mechanism of crack and its extension in blade trailing edge.The material stress around the crack in trailing edge region under different thicknesses is calculated based on the fracture mechanics theory.The factors affecting the fatigue robustness of blade trailing edge are concluded by investigating the results of finite element analysis and coupons test.Compared with the laminate,the lower fatigue strength of the adhesive is the cause of the transverse crack of the adhesive joint at the trailing edge.The increase of the adhesive thickness at the adhesive joint will significantly increase the stress concentration factor at the crack region and accelerate the crack extension of the laminate.In final,a practical design scheme to prevent crack initiation is given for the manufacture of the wind turbine blade.
基金supported by the National Basic Research Program of China (Grant No. 2012CB937500)the National Natural Science Foundation of China (Grant Nos. 11072243 and 11202210)
文摘Based on Tanaka and Mura’s fatigue model and Griffith theory for fracture,an energy-equilibrium model was proposed to explain the complex stress effect on fatigue behavior.When the summation of the elastic strain energy release and the stored strain energy of accumulated dislocations reach the surface energy of a crack,the fatigue crack will initiate in materials.According to this model,for multiaxial stress condition,the orientation of the crack initiation and the initiation life can be deduced from the energy equilibrium equation.For the uniaxial fatigue loading with mean stress,the relation between the maximum stress or the minimum stress and the stress amplitude is in agreement with an ellipse equation on the constant life diagram.If the ratio of the mean stress to stress amplitude is less than a critical value-0.17,and the stress amplitude keeps constant,the fatigue crack initiation life will decrease with the increase of the compress mean stress.In this model,the mean stress does not cause damage accumulation with the fatigue cycles in crack initiation.For this reason,the loading sequence of different load levels would induce the cumulative damage to deviate from the Palmgren-Miner cumulative damage rule.The procedure of estimating the damage under random loading is also discussed.
文摘To investigate fatigue crack initiation characteristics of A1-Zn-Mg alloy welded joint, notched specimens were used in fatigue test for the base metal, welding bead and heat affected zone (HAZ). The fatigue fracture surface near the fatigue crack initiation site was observed by scanning electron microscope (SEM). The results show that the differences of fatigue crack initiation life among base metal, welding bead and HAZ are not obvious. Inhomogeneity in microstructure and mechanical performance of HAZ influences the fatigue crack initiation life. The ratio of fatigue crack initiation life (Ni) to fatigue failure life (Nf) for the base metal, welding bead and HAZ of A7N01 aluminium alloy welded joint are 26.32%, 40.21% and 60.67%, respectively. Fatigue crack initiation life can be predicted using a uniform model. Observation of fatigue fracture surfaces shows that for the welding bead a fatigue crack initiates from the smooth surface due to the welding process, the blowhole in HAZ causes fatigue crack and the crushed second phase particles play an important role in fatigue crack initiation for the base metal.
基金financial support from the"863"Program of China under Nos.2008AA031702 and 2012AA03A507
文摘The crack initiation mechanism of a Z3CN20.09M duplex stainless steel (DSS) during corrosion fatigue (CF) in water and air at 290 ℃ was investigated by using a CF cracking machine and a scanning electron microscopy (SEM). The cracks were initiated successively at the persistent stip bands (PSBs), phase boundaries (PBs) and pitting corrosion points (PCPs) of the specimens when they were tested in water at 290 ℃, while in airat 290 ℃ the cracks were only initiated at the PSBs and PBs. And the cracks were found mainly to initiate at the PSBs and PBs when the specimens were tested in water and air at 290 ℃, respectively. The results also reveal that the cracks were likely to be initiated at the first 20% of fatigue life of the specimens tested in water at 290 ℃. However, the cracks were not found until 50% of fatigue life when tested in air at 290 ℃. Moreover, the crack numbers of the specimens tested in water at 290 ℃ were much more than those tested in air at 290 ℃.
基金supported by the National Natural Science Foundation of China(Grant No.52275161)International Joint Research Center for Value-added Metallurgy and Processing of Non-ferrous Metals(Grant No.2019SD0010)+1 种基金Qin Chuangyuan“Scientist+Engineer”Team Construction in Shaanxi Province(Grant No.2022KXJ-145)Innovation Talent Promotion Program-Science and Technology Innovation Team(Grant No.2023-CX-TD-50).
文摘Fully-reversed cyclic deformation of a pure Zr(a thickness of 17 mm)was conducted at two different strain amplitudes(0.4%and 0.8%)to investigate the deformation and crack initiation behaviors based on slip trace analysis.It was found that prismaticaslip with a higher Schmid Factor(m>0.4)was the dominant deformation mode.The grains containing persistent slip bands(PSBs)tended to go towards[1210]pole and the Schmid Factor had a critical value of 0.4 above which prismatic and pyramidal slip were dominant.Fatigue cracks were mainly initiated at PSBs and grain boundaries(GBs).It showed that 61.1%of the cracks were PSB cracks under a strain amplitude of 0.4%,while it decreased to 53.5%at a strain amplitude of 0.8%.PSB cracks were mainly parallel to prismaticaslip with higher Schmid Factor while some cracks tended to be initiated at GBs with higher misorientation angles.The interaction of PSBs with GBs would result in strain transferring to the neighboring grain.Strain transfer was more likely to occur at the condition of the higher geometrical compatibility factor m,and lower residual Burgers vectorb,which could reduce strain localization.
基金Project supported by the National Natural Science Foundation of China (Nos 10872105 and 51071094)the Mitsubishi Heavy Industries, Ltd, Japan
文摘The fatigue and fracture behavior of nickel-based superalloy Inconel 718 was investigated up to the very high cycle regime under rotary bending tests at room temperature. It was found that this superalloy can still fracture after exceeding 107 cycles. Fractographic analysis revealed that there was a transition from fatigue crack initiation at multi-sites to single initiation with decreasing stress levels. The fracture surface can be divided into four areas according to the appearance, associated with fracture mechanics analysis of the corresponding stress intensity factors. The fracture mechanism dominant in each area was disclosed by scanning electron microscope examination and analyzed in comparison with those obtained from the crack growth tests. Subsequently, life prediction modeling was proposed by estimating the crack initiation and propagation stage respectively. It was found that Chan (2003)'s model for initiation life and the Paris law for growth life can provide comparable predictions against the experimental life.
基金supported by the National Basic Research Program of China (No. 2007CB613803)the National Natural Science Foundation of China (No.51071158)the Fundamental Research Funds for the Central Universities (No. N100702001)
文摘Fatigue cracking behavior from a notch was investigated at room temperature for Ti-6.SAI-3.5Mo-1.5Zr- 0.3Si (TClI) alloys with four different microstructures obtained at different cooling rates from the β transus temperature. It was found that the alloy with lamellar structures consisting of α/β lamellae or acicular α' martensite laths had a higher fatigue crack initiation threshold from the notch, while the bimodal structure with coarse a grain had a lower fatigue cracking resistance. The alloy with α/β lamellar structure showed a higher fatigue crack growth resistance. The length scales of the microstructures were characterized to correlate with fatigue cracking behavior. Fatigue cracking mechanism related to microstructures was discussed.
文摘In fatigue critical applications, Ti-10V-2Fe-3Al alloy components are expected to endure cyclic loading with cycles above 109. To assess their operating safety, S-N relations of Ti-10V-2Fe-3Al alloy in very high cycle fatigue (VHCF) regime are of concern and have been investigated in this work. Fatigue behavior including S-N curves and crack initiation mechanisms is reported. Two transitions of fatigue crack initi- ation mechanism, from internal crack initiation to surface crack initiation and from αp cleavage to αS/β decohesion, occur when the stress ratio (R) and stress level are reduced. Fatigue limits exist at Nr = 6×10^7 cycles for all stress ratios except for 0.5. In the VHCF regime two kinds of internal crack initiation mechanisms exist, i.e., coalescence of cluster of αp facets and αS/β decohesion. Their mutual competition depends on the stress ratio and can be interpreted in terms of different stress character required for promotion on different internal crack initiation mechanism. Small crack propagation is discussed to be life controlling process under the stress ratio range from -0.5 to 0.1 during VHCF regime while under the stress ratio 0.5 VHCF, life almost refers to the life required for crack initiation.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
基金Acknowledgements The authors thank the National Natural Science Foundation of China (Grant No. 11572267), the Open Foundation of the State Key Laboratory for Strength and Vibration of Mechanical Structures of Xi'an Jiaotong University (Grant No. SV2016-KF-21), the Science and Technology Project of Sichuan Province (Grant No. 2017JY0216), and the Self-Developed Research Project of the State Key Laboratory of Traction Power of Southwest Jiaotong University (Grant No. 2015TPL_T07).
文摘Damage accumulation and failure behaviors are crucial concerns during the design and service of a critical component, leading researchers and engineers to thoroughly identifying the crack evolution. Third-generation synchrotron radiation X-ray computed microtomo- graphy can be used to detect the inner damage evolution of a large-density material or component. This paper provides a brief review of studying the crack initiation and propagation inside lightweight materials with advanced synchrotron three-dimensional (3D) X-ray imaging, such as aluminum materials. Various damage modes under both static and dynamic loading are elucidated for pure aluminum, aluminum alloy matrix, aluminum alloy metal matrix composite, and aluminum alloy welded joint. For aluminum alloy matrix, metallurgical defects (porosity, void, inclusion, precipitate, etc.) or artificial defects (notch, scratch, pit, etc.) strongly affect the crack initiation and propagation. For aluminum alloy metal matrix composites, the fracture occurs either from the particle debonding or voids at the particle/matrix interface, and the void evolution is closely related with fatigued cycles. For the hybrid laser welded aluminum alloy, fatigue cracks usually initiate from gas pores located at the surface or sub-surface and gradually propagate to a quarter ellipse or a typical semi-ellipse profile.
文摘Two methods currently available for evaluating the probability of Multiple Site Damage(MSD)occurrence were studied in this paper.One of the methods is a probabilistic analysis approach based on the statistical theory and fatigue characteristics of each structural detail,and the other is an approach which defines the initial damage scenario by means of Monte-Carlo simulation,and multiple initial crack scenarios are randomly generated.A modified method based on the Monte-Carlo simulation was proposed in this paper,in which the random fluctuation of the stress was considered to give more accurate evaluation results.In the presented method,the probability of MSD occurrence in a structural element containing multiple details was calculated based on the Monte-Carlo simulation and the p-S-N curve of a single structural detail.Fatigue tests were accomplished using specimens containing 21-similar-details to obtain the fatigue life corresponding to MSD occurrence.Tests on single-detail specimens and static calibration tests were also conducted to get the basic fatigue properties of the material and the degree of stress fluctuation.The aforementioned three methods were compared and validated via the test results.The influence of the stress random fluctuation degree on the probability of MSD occurrence and influence of the distribution types on evaluating the MSD occurrence probability were discussed.