The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life...The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life prediction model and mean stress relaxation model under asymmetrical stress load were discussed.The results show that the strain ratio has a significant effect on the low cycle fatigue performance of the UFG pure titanium,and the traditional Manson-coffin model can not accurately predict the fatigue life under asymmetric stress load.Therefore,the SWT mean stress correction model and three-parameter power curve model are proposed,and the test results are verified.The final research shows that the threeparameter power surface model has better representation.By studying the mean stress relaxation phenomenon under the condition of R≠-1,it is revealed that the stress ratio and the strain amplitude are the factors that significantly afiect the mean stress relaxation rate,and the mean stress relaxation model with the two variables is calculated to describe the mean stress relaxation phenomenon of the UFG pure titanium under different strain ratios.The fracture morphology of the samples was observed by SEM,and it was concluded that the final fracture zone of the fatigue fracture of the UFG pure titanium was a mixture of ductile fracture and quasi cleavage fracture.The toughness of the material increases with the increase of strain ratio at the same strain amplitude.展开更多
The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was show...The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa.m^1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.展开更多
A fatigue damage model based on thermodynamics was deduced for asphalt mixtures under controlled-stress and controlled-strain modes. By employing modulus of resilience as the damage hardening variable, a damage variab...A fatigue damage model based on thermodynamics was deduced for asphalt mixtures under controlled-stress and controlled-strain modes. By employing modulus of resilience as the damage hardening variable, a damage variable related with dynamic modulus was extracted as the evaluation index. Then, the damage evolution law under two control modes was proposed, and it has a similar form to the Chaboche fatigue model with a nonnegative material parameter m related to its loading level. Experimental data of four loading levels were employed to calibrate the model and identify the parameter in both control modes. It is found that the parameter m shows an exponential relationship with its loading level. Besides, the difference of damage evolution under two control modes was explained by the law. The damage evolves from fast to slow under a controlled-strain mode. However, under a controlled-stress mode, the evolution rate is just the opposite. By using the damage equivalence principle to calculate the equivalent cycle numbers, the deduced model also interprets the difference of damage evolution under two control modes on the condition of multilevel loading. Under a controlled-strain mode, a loading sequence from a low level to a high level accelerates damage evolution. An inverse order under the controlled-stress mode can prolong fatigue life.展开更多
This paper presents an extension of a displacement discontinuity method with cracktip elements (a boundary element method) proposed by the author for fatigue crack growth analysis in plane elastic media under mixed-...This paper presents an extension of a displacement discontinuity method with cracktip elements (a boundary element method) proposed by the author for fatigue crack growth analysis in plane elastic media under mixed-mode conditions. The boundary element method consists of the non-singular displacement discontinuity elements presented by Crouch and Starfield and the crack-tip displacement discontinuity elements due to the author. In the boundary element implementation the left or right crack-tip element is placed locally at the corresponding left or right crack tip on top of the non-singular displacement discontinuity elements that cover the entire crack surface and the other boundaries. Crack growth is simulated with an incremental crack extension analysis based on the maximum circumferential stress criterion. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not required because of an intrinsic feature of the numerical approach. Crack growth is modeled by adding new boundary elements on the incremental crack extension to the previous crack boundaries. At the same time, the element characteristics of some related elements are adjusted according to the manner in which the boundary element method is implemented. As an example, the fatigue growth process of cracks emanating from a circular hole in a plane elastic plate is simulated using the numerical simulation approach.展开更多
To investigate the mechanical properties of a dowel action under fatigue loads, nine reinforced concrete specimens were fabricated, and the monotonic and fatigue loadings were performed on these specimens, respectivel...To investigate the mechanical properties of a dowel action under fatigue loads, nine reinforced concrete specimens were fabricated, and the monotonic and fatigue loadings were performed on these specimens, respectively. All of these specimens were divided into two series. Six specimens in SeriesⅠwith different bar diameters of 12, 20 and 25 mm were subjected to monotonic loads and were used to confirm the ultimate bearing capacity. The remaining three specimens in Series Ⅱ were subjected to fatigue loads and were designed to investigate the attenuation character of dowel action and the fatigue failure modes. The test results show that the accumulated fatigue damage due to fatigue loads can reduce the ultimate bearing capacity of specimens. With the increase in fatigue loads, the failure mode can transform to fatigue rupture of the dowel bar under the serviceability loading state,i. e. 55% of the monotonic capacity. The fatigue life is determined by the fatigue properties of steel and concrete.Based on the test data, the failure process of dowel action can be divided into two stages: the accumulation of fatigue damage and the fatigue rupture of dowel bar.展开更多
Paris law can reflect the failure mechanism of materials and is usually used to be a method to predict fatigue life or residual fatigue life.But the variable which can represent the health of machine is hardly measure...Paris law can reflect the failure mechanism of materials and is usually used to be a method to predict fatigue life or residual fatigue life.But the variable which can represent the health of machine is hardly measured on line.To a degree,the difficulty of on-line application restricts the scope of application of Paris law.The relationship between characteristic values of vibration signals and the variable in the Paris equation which can describe the health of machine is investigated by taking ball bearings as investigative objects.Based on 6205 deep groove ball bearings as a living example,historical lives and vibration signals are analyzed.The feasibility of describing that variable in the Paris equation by the characteristic value of vibration signals is inspected.After that vibration signals decomposed by empirical mode decomposition(EMD),root mean square(RMS) of intrinsic mode function(IMF) involving fault characteristic frequency has a consistent trend with the diameter of flaws.Based on the trend,two improved Paris models are proposed and the scope of application of them is inspected.These two Paris Models are validated by fatigue residual life data from tests of rolling element bearings and vibration signals monitored in the process of operation of rolling element bearings.It shows that the first improved Paris Model is simple and plain and it can be easily applied in actual conditions.The trend of the fatigue residual life predicted by the second improved Paris model is close to the actual conditions and the result of the prediction is slightly greater than the truth.In conclusion,after the appearance of detectable faults,these improved models based on RMS can predict residual fatigue life on line and a new approach to predict residual fatigue life of ball bearings on line without disturbing the machine running is provided.展开更多
Before 1980s,the circular suspension spring in automobile subjected to torsion fatigue load,under the cyclic normal tensile stresses,the majority of fatigue fracture occurred was in normal tensile fracture mode(NTFM...Before 1980s,the circular suspension spring in automobile subjected to torsion fatigue load,under the cyclic normal tensile stresses,the majority of fatigue fracture occurred was in normal tensile fracture mode(NTFM)and the fracture surface was under 45°diagonal.Because there exists the interaction between the residual stresses induced by shot peening and the applied cyclic normal tensile stresses in NTFM,which represents as"stress strengthening mechanism",shot peening technology could be used for improving the fatigue fracture resistance(FFR)of springs.However,since 1990s up to date,in addition to regular NTFM,the fatigue fractures occurred of peened springs from time to time are in longitudinal shear fracture mode(LSFM)or transverse shear fracture mode(TSFM)with the increase of applied cyclic shear stresses,which leads to a remarkable decrease of FFR.However,LSFM/TSFM can be avoided effectively by means of shot peening treatment again on the peened springs.The phenomena have been rarely happened before.At present there are few literatures concerning this problem.Based upon the results of force analysis of a spring,there is no interaction between the residual stresses by shot peening and the applied cyclic shear stresses in shear fracture.This;means that the effect of"stress strengthening mechanism"for improving the FFR of LSFM/TSFM is disappeared basically.During shot peening,however,both of residual stress and cyclic plastic deformed microstructure are induced synchronously like"twins"in the surface layer of a spring.It has been found for the first time by means of force analysis and experimental results that the modified microstructure in the"twins"as a"structure strengthening mechanism"can improve the FFR of LSFM/TSFM.At the same time,it is;also shown that the optimum technology of shot peening strengthening must have both"stress strengthening mechanism"and"structure strengthening mechanism"simultaneously so that the FFR of both NTFM and LSFM/TSFM can be improved by shot peening.展开更多
Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete...Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle.展开更多
The effect of proportional and non-proportional overloading on mode l fatigue crack growth have been studied,and the influences of crack tip plastic zone,crack tip blunting as well as crack closure were discussed.Prop...The effect of proportional and non-proportional overloading on mode l fatigue crack growth have been studied,and the influences of crack tip plastic zone,crack tip blunting as well as crack closure were discussed.Proportional(model I)overloading may cause more serious crack growth retardation than non-proportional(mixed mode)overloading.Therefore,for estimating the fatigue life of engineering structures to simplify a real overload which may of- ten be non-proportional as a proportional one is not always safe.展开更多
基金Funded by National Natural Science Foundation of China(No.51474170)the Key Laboratory Project of Shaanxi Provincial Department of Education(No.20js075)。
文摘The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life prediction model and mean stress relaxation model under asymmetrical stress load were discussed.The results show that the strain ratio has a significant effect on the low cycle fatigue performance of the UFG pure titanium,and the traditional Manson-coffin model can not accurately predict the fatigue life under asymmetric stress load.Therefore,the SWT mean stress correction model and three-parameter power curve model are proposed,and the test results are verified.The final research shows that the threeparameter power surface model has better representation.By studying the mean stress relaxation phenomenon under the condition of R≠-1,it is revealed that the stress ratio and the strain amplitude are the factors that significantly afiect the mean stress relaxation rate,and the mean stress relaxation model with the two variables is calculated to describe the mean stress relaxation phenomenon of the UFG pure titanium under different strain ratios.The fracture morphology of the samples was observed by SEM,and it was concluded that the final fracture zone of the fatigue fracture of the UFG pure titanium was a mixture of ductile fracture and quasi cleavage fracture.The toughness of the material increases with the increase of strain ratio at the same strain amplitude.
基金financially supported by the National Key Technologies Research and Development Program of China (No. 2007BAE51B05)
文摘The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa.m^1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.
基金The Open Fund Project of National Key Laboratory of High Performance Civil Engineering Materials(No.2016CEM001)
文摘A fatigue damage model based on thermodynamics was deduced for asphalt mixtures under controlled-stress and controlled-strain modes. By employing modulus of resilience as the damage hardening variable, a damage variable related with dynamic modulus was extracted as the evaluation index. Then, the damage evolution law under two control modes was proposed, and it has a similar form to the Chaboche fatigue model with a nonnegative material parameter m related to its loading level. Experimental data of four loading levels were employed to calibrate the model and identify the parameter in both control modes. It is found that the parameter m shows an exponential relationship with its loading level. Besides, the difference of damage evolution under two control modes was explained by the law. The damage evolves from fast to slow under a controlled-strain mode. However, under a controlled-stress mode, the evolution rate is just the opposite. By using the damage equivalence principle to calculate the equivalent cycle numbers, the deduced model also interprets the difference of damage evolution under two control modes on the condition of multilevel loading. Under a controlled-strain mode, a loading sequence from a low level to a high level accelerates damage evolution. An inverse order under the controlled-stress mode can prolong fatigue life.
基金Project supported by the National Natural Science Foundation of China (No. 10272037).
文摘This paper presents an extension of a displacement discontinuity method with cracktip elements (a boundary element method) proposed by the author for fatigue crack growth analysis in plane elastic media under mixed-mode conditions. The boundary element method consists of the non-singular displacement discontinuity elements presented by Crouch and Starfield and the crack-tip displacement discontinuity elements due to the author. In the boundary element implementation the left or right crack-tip element is placed locally at the corresponding left or right crack tip on top of the non-singular displacement discontinuity elements that cover the entire crack surface and the other boundaries. Crack growth is simulated with an incremental crack extension analysis based on the maximum circumferential stress criterion. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not required because of an intrinsic feature of the numerical approach. Crack growth is modeled by adding new boundary elements on the incremental crack extension to the previous crack boundaries. At the same time, the element characteristics of some related elements are adjusted according to the manner in which the boundary element method is implemented. As an example, the fatigue growth process of cracks emanating from a circular hole in a plane elastic plate is simulated using the numerical simulation approach.
基金The Fund of the National Key Laboratory in China(No.2015-Ky-01)the National Key Technology R&D Program of China(No.2015BAB07B07)
文摘To investigate the mechanical properties of a dowel action under fatigue loads, nine reinforced concrete specimens were fabricated, and the monotonic and fatigue loadings were performed on these specimens, respectively. All of these specimens were divided into two series. Six specimens in SeriesⅠwith different bar diameters of 12, 20 and 25 mm were subjected to monotonic loads and were used to confirm the ultimate bearing capacity. The remaining three specimens in Series Ⅱ were subjected to fatigue loads and were designed to investigate the attenuation character of dowel action and the fatigue failure modes. The test results show that the accumulated fatigue damage due to fatigue loads can reduce the ultimate bearing capacity of specimens. With the increase in fatigue loads, the failure mode can transform to fatigue rupture of the dowel bar under the serviceability loading state,i. e. 55% of the monotonic capacity. The fatigue life is determined by the fatigue properties of steel and concrete.Based on the test data, the failure process of dowel action can be divided into two stages: the accumulation of fatigue damage and the fatigue rupture of dowel bar.
基金supported by National Natural Science Foundation of China (Grant No. 50705096)National Science and Technology Major Project of China(Grant No. 2009zx04014-014)
文摘Paris law can reflect the failure mechanism of materials and is usually used to be a method to predict fatigue life or residual fatigue life.But the variable which can represent the health of machine is hardly measured on line.To a degree,the difficulty of on-line application restricts the scope of application of Paris law.The relationship between characteristic values of vibration signals and the variable in the Paris equation which can describe the health of machine is investigated by taking ball bearings as investigative objects.Based on 6205 deep groove ball bearings as a living example,historical lives and vibration signals are analyzed.The feasibility of describing that variable in the Paris equation by the characteristic value of vibration signals is inspected.After that vibration signals decomposed by empirical mode decomposition(EMD),root mean square(RMS) of intrinsic mode function(IMF) involving fault characteristic frequency has a consistent trend with the diameter of flaws.Based on the trend,two improved Paris models are proposed and the scope of application of them is inspected.These two Paris Models are validated by fatigue residual life data from tests of rolling element bearings and vibration signals monitored in the process of operation of rolling element bearings.It shows that the first improved Paris Model is simple and plain and it can be easily applied in actual conditions.The trend of the fatigue residual life predicted by the second improved Paris model is close to the actual conditions and the result of the prediction is slightly greater than the truth.In conclusion,after the appearance of detectable faults,these improved models based on RMS can predict residual fatigue life on line and a new approach to predict residual fatigue life of ball bearings on line without disturbing the machine running is provided.
文摘Before 1980s,the circular suspension spring in automobile subjected to torsion fatigue load,under the cyclic normal tensile stresses,the majority of fatigue fracture occurred was in normal tensile fracture mode(NTFM)and the fracture surface was under 45°diagonal.Because there exists the interaction between the residual stresses induced by shot peening and the applied cyclic normal tensile stresses in NTFM,which represents as"stress strengthening mechanism",shot peening technology could be used for improving the fatigue fracture resistance(FFR)of springs.However,since 1990s up to date,in addition to regular NTFM,the fatigue fractures occurred of peened springs from time to time are in longitudinal shear fracture mode(LSFM)or transverse shear fracture mode(TSFM)with the increase of applied cyclic shear stresses,which leads to a remarkable decrease of FFR.However,LSFM/TSFM can be avoided effectively by means of shot peening treatment again on the peened springs.The phenomena have been rarely happened before.At present there are few literatures concerning this problem.Based upon the results of force analysis of a spring,there is no interaction between the residual stresses by shot peening and the applied cyclic shear stresses in shear fracture.This;means that the effect of"stress strengthening mechanism"for improving the FFR of LSFM/TSFM is disappeared basically.During shot peening,however,both of residual stress and cyclic plastic deformed microstructure are induced synchronously like"twins"in the surface layer of a spring.It has been found for the first time by means of force analysis and experimental results that the modified microstructure in the"twins"as a"structure strengthening mechanism"can improve the FFR of LSFM/TSFM.At the same time,it is;also shown that the optimum technology of shot peening strengthening must have both"stress strengthening mechanism"and"structure strengthening mechanism"simultaneously so that the FFR of both NTFM and LSFM/TSFM can be improved by shot peening.
基金Projects(51178174,51308201)supported by the National Natural Science Foundation of China
文摘Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle.
文摘The effect of proportional and non-proportional overloading on mode l fatigue crack growth have been studied,and the influences of crack tip plastic zone,crack tip blunting as well as crack closure were discussed.Proportional(model I)overloading may cause more serious crack growth retardation than non-proportional(mixed mode)overloading.Therefore,for estimating the fatigue life of engineering structures to simplify a real overload which may of- ten be non-proportional as a proportional one is not always safe.