期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
System dynamics in structural strength and vibration fatigue life assessment of the swing bar for high‐speed maglev train
1
作者 Feng Guo Feifei Hu +3 位作者 Shengchuan Wu Feng He Jianxin Liu Xingwen Wu 《International Journal of Mechanical System Dynamics》 2022年第2期178-189,共12页
High‐speed maglev trains are subjected to severe dynamic loads,thus posing a failure hazard.It is necessary to account for the vehicle dynamics to improve the structural strength and fatigue life assessment approach ... High‐speed maglev trains are subjected to severe dynamic loads,thus posing a failure hazard.It is necessary to account for the vehicle dynamics to improve the structural strength and fatigue life assessment approach under harsh routes and super high‐speed grades.As the most critical load‐carrying part between the vehicle body and levitation frames,the swing bar was taken as an example to demonstrate the significance of vehicle dynamics to integrate classical structural strength and fatigue life with the service conditions.A multiphysics‐coupled dynamic model of an alpha improvement scheme for an electromagnetic suspension maglev train capable of 600 km/h was established to investigate the complex dynamic loads and fatigue spectra.Using this model,the structural strength and fatigue life of the wrought swing bars were investigated.Results show only a slight effect on the structural strength and fatigue life of swing bars by the super high‐speed grades.The nonaxial bending moments caused by the uncompensated relative displacement between the vehicle body and bolsters are identified as the decisive factors.The minimum safety factor of the structural strength for wrought swing bars is 1.33,while the minimum fatigue life is 34 years.Both match the design requirements but are not conservative enough.Therefore,further verification and optimization are recommended to improve the design of swing bars. 展开更多
关键词 vibration fatigue life dynamic strength levitation frame high‐speed maglev train time‐domain stepwise fatigue assessment(TSFA)
原文传递
Microstructure characterization and HCF fracture mode transition for modified 9Cr-1Mo dissimilarly welded joint at different elevated temperatures 被引量:1
2
作者 Chendong Shao Fenggui Lu +2 位作者 Xiongfei Wang Yuming Ding Zhuguo Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第12期1610-1620,共11页
The high cycle fatigue(HCF) tests of modified 9 Cr-1 Mo dissimilarly welded joint were carried out at different elevated temperatures and the fracture mechanism was systematically revealed. The fatigue strength at 1... The high cycle fatigue(HCF) tests of modified 9 Cr-1 Mo dissimilarly welded joint were carried out at different elevated temperatures and the fracture mechanism was systematically revealed. The fatigue strength at 108 cycles based on S-N curve can be estimated as a half of weld joint's yield strength for all conducted temperatures, which can be a reliable criterion in predicting the fatigue life. The results show that the inter-critical heat affected zones(IC-HAZs) of both sides are the weak zones due to their low hardness and inferior fatigue resistance property. HAZ of COST-FB2(BM2) is the weakest zone at room temperature due to the existence of numerously distributed defects and the initiation of cracks, either in the surface or interior zone, impacting a crucial effect on the fatigue life of the joint. While at elevated temperatures, fatigue life was controlled mostly by the intrusion-extrusion mechanism at the specimen surface under high stress level and subsurface non-defect fatigue crack origin(SNDFCO) from the interior material under low stress amplitude. With increasing temperature, more and more fatigue failures began to occur at the HAZ of COST-E(BM1) due to its higher susceptibility of temperature. Besides, it is found that the-ferrite in the BM1 has no harm to the HCF behavior of the joint at the conducted temperatures. 展开更多
关键词 High cycle fatigue Dissimilarly welded joint Life time fatigue failure Fracture mode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部