Beef from Japanese Black cattle (JBK), is popular in Japan and valued for its highly marbled fat content. In JBK, genes affecting oleic acid content in meat have been studied mainly to lower the fat melting point and ...Beef from Japanese Black cattle (JBK), is popular in Japan and valued for its highly marbled fat content. In JBK, genes affecting oleic acid content in meat have been studied mainly to lower the fat melting point and improve tenderness;however, there has been no direct correlation demonstrated between beef taste and oleic acid. To investigate genes affecting other fatty acids other than oleic acid, polymorphisms of the fatty acid desaturase 2 (FADS2) gene were genotyped and associations with fatty acid profile in JBK beef were investigated. Amplifications of 5’-flanking regions, 12 exons, and 3’-untranslated regions of the FADS2 gene in three Japanese and five Western cattle breeds via PCR, were amplified, sequenced and SNPs were identified using specific TaqMan genotyping assay. Fatty acid composition of intramuscular adipose tissue of the Trapezius muscle was analyzed in JBK steers. Six of the 15 identified SNPs are novel and have never been registered in any public bovine SNP database. A non-synonymous SNP (rs211580559;C > T;294 Ala > Val) in exon 7 was examined in order to evaluate its association with fatty acid profiles. The data showed that highly significant association existed between rs211580559 and C18:2 (n-6) composition, and accounted for 22.3% of the variation. There were no significant relationships between rs2115-80559 and the other fatty acids. It was concluded that rs211580559 of the FADS2 gene may be a useful selection marker for reducing unfavorable volatiles generated from linoleic acid in JBK beef during the cooking process.展开更多
It is suggested that Δ6 fatty acid desaturase(FAD) plays a critical role in the biosynthesis of polyunsaturated fatty acids in plants and microalgae. But why does it adapt to the changed environments such as nitrogen...It is suggested that Δ6 fatty acid desaturase(FAD) plays a critical role in the biosynthesis of polyunsaturated fatty acids in plants and microalgae. But why does it adapt to the changed environments such as nitrogen starvation is seldom understood. One Δ6 FAD gene( MiD6 fad) from an arachidonic acidrich microalga M yrmecia incisa Reisigl(Chlorophyta) was first heterologously expressed in S accharomyces cerevisiae for the identification of function. The fatty acid profile of transgenic yeast detected by gas chromatography-mass spectrometry illustrated that the enzyme MiD6 FAD could convert linoleic and ?-linolenic acids to γ-linolenic and stearidonic acids, respectively, demonstrating that M iD6 fad encoded a Δ6 FAD. A 1 965-bp fragment of the cloned 2 347-bp 5′-upstream region of M iD6 fad was next subcloned and fused upstream with green fluorescent protein(GFP) gene to replace the GAL1 promoter of the vector pYES2. The generated construct was transformed into S. cerevisiae for function determination. Confocal microscopic images of the transformed line illustrated that this inserted fragment could drive GFP expression, which was further verified by fluorescence intensity quantification and Western blot analysis using antiGFP antibody. The conversion efficiency(approximately 2%-3%) of MiD6 FAD was much lower than the reported ? 3 FAD and Δ6 elongase in this microalga, suggesting that MiD6 FAD catalysed the possible ratelimiting step for ArA biosynthesis. The presence of several putative c is-acting regulatory elements in this identified promoter sheds new light on the regulation mechanism research of Δ6 FAD transcription for the ArA production in M. incisa in changing environmental factors.展开更多
脂肪酸是影响家鸡肉品质的重要风味物质,Δ6-脂肪酸脱氢酶基因(FADS2)是不饱和脂肪酸生物合成过程中的关键酶。研究以武定鸡和大围山微型鸡为研究对象,检测肌肉组织中脂肪酸含量及FADS2基因表达量,比较不同鸡种脂肪酸含量及FADS2基因表...脂肪酸是影响家鸡肉品质的重要风味物质,Δ6-脂肪酸脱氢酶基因(FADS2)是不饱和脂肪酸生物合成过程中的关键酶。研究以武定鸡和大围山微型鸡为研究对象,检测肌肉组织中脂肪酸含量及FADS2基因表达量,比较不同鸡种脂肪酸含量及FADS2基因表达差异。结果显示,整体上,武定鸡腿肌中饱和脂肪酸(SFA)、单不饱和脂肪酸(MUFA)、不饱和脂肪酸(USFA)、多不饱和脂肪酸(PUFA)、必需脂肪酸(EFA)及总脂肪酸含量和FADS2 m RNA表达量均显著高于大围山微型鸡,且在部位和周龄上存在显著差异。研究表明,武定鸡风味比大围山微型鸡优良,FADS2基因是影响家鸡肉品质的重要候选基因。展开更多
Modification of unsaturated fatty acid (FA) levels has been found to accompany multiple abiotic stress acclimations in many plants. Delta 12 fatty acid desaturase (FAD2) plays a critical role in the synthesis of p...Modification of unsaturated fatty acid (FA) levels has been found to accompany multiple abiotic stress acclimations in many plants. Delta 12 fatty acid desaturase (FAD2) plays a critical role in the synthesis of polyunsaturated FAs in plant cells by converting oleic acid (18:1) to linoleic acid (18:2). To better understand the relationship between polyunsaturated FAs metabolism and stress adaptation, the expression of FAD2 gene and changes in the FA compositions under various abiotic stresses and phytohormone treatments in Arabidopsis thaliana was investigated in this study. A 1 423-bp promoter of the FAD2 gene was cloned and characterized from Arabidopsis. Several putative hormone- and stress- inducible cis-elements were identified in the cloned promoter, which include salt- and pathogen-inducible GT-1 motifs, low-temperature-responsive MYC element, dehydration-responsive MYB element, and GA signaling related WRKY71OS element. To investigate the fine regulation of FAD2 gene, a recombinant FAD2 promoter-GUS construct was introduced into Arabidopsis plants. Histochemical study showed that the promoter was ubiquitously active and responsive not only to exogenous phytohormones including ABA, 24-eBL, and SA but also to darkness, temperature, salt, and sucrose stresses in Arabidopsis seedlings. Consistent with the expression change, treatments with exogenous 24-eBL, ABA, SA, and NaCl resulted in reduction in polyunsaturated FAs in Arabidopsis seedlings. These findings suggest that the FAD2 gene with a wide variety of putative response elements in its promoter is responsive to multiple phytohormones and abiotic stresses and therefore may play an important role in stress responses of Arabidopsis during plant growth and seed development.展开更多
Fatty acid desaturase-2 (FAD2) introduces a double bond in position 12 in oleic acid (18:1) to form linoleic acid (18:2 n-6) in higher plants and microbes. A new transgenic expression cassette, containing CMV promoter...Fatty acid desaturase-2 (FAD2) introduces a double bond in position 12 in oleic acid (18:1) to form linoleic acid (18:2 n-6) in higher plants and microbes. A new transgenic expression cassette, containing CMV promoter/fad2 cDNA/SV40 polyA, was constructedto produce transgenic mice. Among 63 healthy offspring, 10 founders (15.9%) integrated the cotton fad2 transgene into their genomes, as demonstrated by PCR and Southern blotting analysis. All founder mice were fertile and heterozygous fad2 female and nontransgenic littermates were used for fatty acid analysis using gas chromatography. One fad2 transgenic line showed substantial differences in the fatty acid profiles and the level of linoleic acid was increased 19% (P<0.05) in transgenic muscles compared to their nontransgenic littermates. Moreover, it exhibited an 87% and a 9% increase (P<0.05) in arachidonic acid (20:4 n-6) in muscles and liver, compared to their nontransgenic littermates. The results indicate that the plant fad2 gene can be functionally expressed in transgenic mice and may playan active role in conversion of oleic acid into linoleic acid.展开更多
文摘Beef from Japanese Black cattle (JBK), is popular in Japan and valued for its highly marbled fat content. In JBK, genes affecting oleic acid content in meat have been studied mainly to lower the fat melting point and improve tenderness;however, there has been no direct correlation demonstrated between beef taste and oleic acid. To investigate genes affecting other fatty acids other than oleic acid, polymorphisms of the fatty acid desaturase 2 (FADS2) gene were genotyped and associations with fatty acid profile in JBK beef were investigated. Amplifications of 5’-flanking regions, 12 exons, and 3’-untranslated regions of the FADS2 gene in three Japanese and five Western cattle breeds via PCR, were amplified, sequenced and SNPs were identified using specific TaqMan genotyping assay. Fatty acid composition of intramuscular adipose tissue of the Trapezius muscle was analyzed in JBK steers. Six of the 15 identified SNPs are novel and have never been registered in any public bovine SNP database. A non-synonymous SNP (rs211580559;C > T;294 Ala > Val) in exon 7 was examined in order to evaluate its association with fatty acid profiles. The data showed that highly significant association existed between rs211580559 and C18:2 (n-6) composition, and accounted for 22.3% of the variation. There were no significant relationships between rs2115-80559 and the other fatty acids. It was concluded that rs211580559 of the FADS2 gene may be a useful selection marker for reducing unfavorable volatiles generated from linoleic acid in JBK beef during the cooking process.
基金Supported by the National Natural Science Foundation of China(No.31172389)the Special Project of Marine Renewable Energy from the State Oceanic Administration(No.SHME2011SW02)the Shanghai Universities Peak Discipline Project of Aquaculture
文摘It is suggested that Δ6 fatty acid desaturase(FAD) plays a critical role in the biosynthesis of polyunsaturated fatty acids in plants and microalgae. But why does it adapt to the changed environments such as nitrogen starvation is seldom understood. One Δ6 FAD gene( MiD6 fad) from an arachidonic acidrich microalga M yrmecia incisa Reisigl(Chlorophyta) was first heterologously expressed in S accharomyces cerevisiae for the identification of function. The fatty acid profile of transgenic yeast detected by gas chromatography-mass spectrometry illustrated that the enzyme MiD6 FAD could convert linoleic and ?-linolenic acids to γ-linolenic and stearidonic acids, respectively, demonstrating that M iD6 fad encoded a Δ6 FAD. A 1 965-bp fragment of the cloned 2 347-bp 5′-upstream region of M iD6 fad was next subcloned and fused upstream with green fluorescent protein(GFP) gene to replace the GAL1 promoter of the vector pYES2. The generated construct was transformed into S. cerevisiae for function determination. Confocal microscopic images of the transformed line illustrated that this inserted fragment could drive GFP expression, which was further verified by fluorescence intensity quantification and Western blot analysis using antiGFP antibody. The conversion efficiency(approximately 2%-3%) of MiD6 FAD was much lower than the reported ? 3 FAD and Δ6 elongase in this microalga, suggesting that MiD6 FAD catalysed the possible ratelimiting step for ArA biosynthesis. The presence of several putative c is-acting regulatory elements in this identified promoter sheds new light on the regulation mechanism research of Δ6 FAD transcription for the ArA production in M. incisa in changing environmental factors.
文摘脂肪酸是影响家鸡肉品质的重要风味物质,Δ6-脂肪酸脱氢酶基因(FADS2)是不饱和脂肪酸生物合成过程中的关键酶。研究以武定鸡和大围山微型鸡为研究对象,检测肌肉组织中脂肪酸含量及FADS2基因表达量,比较不同鸡种脂肪酸含量及FADS2基因表达差异。结果显示,整体上,武定鸡腿肌中饱和脂肪酸(SFA)、单不饱和脂肪酸(MUFA)、不饱和脂肪酸(USFA)、多不饱和脂肪酸(PUFA)、必需脂肪酸(EFA)及总脂肪酸含量和FADS2 m RNA表达量均显著高于大围山微型鸡,且在部位和周龄上存在显著差异。研究表明,武定鸡风味比大围山微型鸡优良,FADS2基因是影响家鸡肉品质的重要候选基因。
基金supported by grants from the National HighTech R&D Program of China (2008AA02Z103)the National Natural Science Foundation of China (30671332)the Natural Science Foundation of Zhejiang Province,China (Z304430)
文摘Modification of unsaturated fatty acid (FA) levels has been found to accompany multiple abiotic stress acclimations in many plants. Delta 12 fatty acid desaturase (FAD2) plays a critical role in the synthesis of polyunsaturated FAs in plant cells by converting oleic acid (18:1) to linoleic acid (18:2). To better understand the relationship between polyunsaturated FAs metabolism and stress adaptation, the expression of FAD2 gene and changes in the FA compositions under various abiotic stresses and phytohormone treatments in Arabidopsis thaliana was investigated in this study. A 1 423-bp promoter of the FAD2 gene was cloned and characterized from Arabidopsis. Several putative hormone- and stress- inducible cis-elements were identified in the cloned promoter, which include salt- and pathogen-inducible GT-1 motifs, low-temperature-responsive MYC element, dehydration-responsive MYB element, and GA signaling related WRKY71OS element. To investigate the fine regulation of FAD2 gene, a recombinant FAD2 promoter-GUS construct was introduced into Arabidopsis plants. Histochemical study showed that the promoter was ubiquitously active and responsive not only to exogenous phytohormones including ABA, 24-eBL, and SA but also to darkness, temperature, salt, and sucrose stresses in Arabidopsis seedlings. Consistent with the expression change, treatments with exogenous 24-eBL, ABA, SA, and NaCl resulted in reduction in polyunsaturated FAs in Arabidopsis seedlings. These findings suggest that the FAD2 gene with a wide variety of putative response elements in its promoter is responsive to multiple phytohormones and abiotic stresses and therefore may play an important role in stress responses of Arabidopsis during plant growth and seed development.
基金Supported by the National Basic Research and Development Program of China (Grant No 2004CB117500)the National Natural Science Foundation of China (Grant No 30571332)the National Major Special Project on New Varieties Cultivation for Transgenic Organisms (Grant No 2008ZX08008-003)
文摘Fatty acid desaturase-2 (FAD2) introduces a double bond in position 12 in oleic acid (18:1) to form linoleic acid (18:2 n-6) in higher plants and microbes. A new transgenic expression cassette, containing CMV promoter/fad2 cDNA/SV40 polyA, was constructedto produce transgenic mice. Among 63 healthy offspring, 10 founders (15.9%) integrated the cotton fad2 transgene into their genomes, as demonstrated by PCR and Southern blotting analysis. All founder mice were fertile and heterozygous fad2 female and nontransgenic littermates were used for fatty acid analysis using gas chromatography. One fad2 transgenic line showed substantial differences in the fatty acid profiles and the level of linoleic acid was increased 19% (P<0.05) in transgenic muscles compared to their nontransgenic littermates. Moreover, it exhibited an 87% and a 9% increase (P<0.05) in arachidonic acid (20:4 n-6) in muscles and liver, compared to their nontransgenic littermates. The results indicate that the plant fad2 gene can be functionally expressed in transgenic mice and may playan active role in conversion of oleic acid into linoleic acid.