Two new triterpene fatty esters, 3β-tetradecanoyl moradiol 1 and 3β-dodecanoyl moradiol 2, were isolated from Scorzonera mongolica. Their structures were elucidated as 3β-tetradecanoyloxy-28-hydroxylolean-18-ene an...Two new triterpene fatty esters, 3β-tetradecanoyl moradiol 1 and 3β-dodecanoyl moradiol 2, were isolated from Scorzonera mongolica. Their structures were elucidated as 3β-tetradecanoyloxy-28-hydroxylolean-18-ene and 3β-dodecanoyl-28-hydroxyl-olean-18-ene on the basis of IR, MS, 1D NMR and extensive 2D NMR spectroscopic analyses.展开更多
The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (I...The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (IL)[C3SO3HMIM][HSO4]as catalyst.The effects of hydrogen peroxide/ethylenic unsaturation ratio,acetic acid concentration,IL concentration,recycling of the IL catalyst,and temperature on the conversion to oxirane were studied.The kinetics and thermodynamics of unsaturated FAMEs epoxidation and the kinetics of oxirane cleavage of the epoxidized FAMEs by acetic acid were also studied.The conversion of ethylenic unsaturation group to oxirane, the reaction rate of the conversion to oxirane,and the rate of hydrolysis(oxirane cleavage)were higher by using the IL catalyst.展开更多
A self-made lipase preparation from Candida sp. 99-125 was used for the production of biodiesel through enzymatic esterification of fatty acids. The crude lipase powder and fermentation broth were immobilized on a che...A self-made lipase preparation from Candida sp. 99-125 was used for the production of biodiesel through enzymatic esterification of fatty acids. The crude lipase powder and fermentation broth were immobilized on a cheap fiber cloth carrier. The conditions of lipase-catalyzed esterification between long-chain fatty acids and methanol in a solvent system were investigated in detail, including the temperature, pH value, substrate concentration, solvent, absorbent agent, enzyme dosage and purity, immobilization method, the mode of addition of substrate. The results show that reaction temperature, pH of lipase micro-environment, substrate concentration, enzyme dosage and purity affect the esterification strongly. Several new methods and enzymatic procedures for improving the enzymatic reaction involving the process cost are also discussed, such as fossil diesel fuel as reaction solvent, immobilization method, multi-step gradient addition of methanol. The esterification degree of 92.8% was obtained with oleic acid and methanol under the optimal reaction condition after 12.5 h reaction time. The half-life of the immobilized lipase preparation from crude free lipase powder for esterification was 15 days.展开更多
For making use of Ginseng resources that exhibit an antitumor activity and for finding new anticancer drugs, three new fatty acid ester compounds: 3/β-acetoxy panaxadiol ( Ⅰ ), 3β-palmitic acid aceloxy panaxadi...For making use of Ginseng resources that exhibit an antitumor activity and for finding new anticancer drugs, three new fatty acid ester compounds: 3/β-acetoxy panaxadiol ( Ⅰ ), 3β-palmitic acid aceloxy panaxadiol ( Ⅱ ) , and 3β-octadecanoic acid aceloxy panaxadiol( Ⅰ , Ⅱ, and m) were synthesized with panaxadiol, diacetyl oxide, palmityl chloride and stearyl chloride, and their structures were determined via MS, ^13C NMR, IR, TLC, and so on. The molar yields of the three compounds are 75.14%, 79. 08%, and 72. 57%, respectively. Meanwhile, the antitumor activity of the three new panaxadiol fatty acid ester derivatives and panaxadiol was compared by using the method of MTT. Tumor cell used was Vero cell line. Positive control was 5-FU, blank was an RPMI1640 culture medium, negative control was an RPMI1640 culture medium and the solvent for drugs to be tested. Compound Ⅰ has the strongest antitumor activity followed by panaxadiol; compounds Ⅱ and Ⅲ have similar and weakest antitumor activities. Furthermore, the antitumor activities of the panaxadiol fatty acid ester derivatives show positive correlation with the concentration of the test group, but show no relationship with the molecular weight of fatty acid. The methods that are used to synthesize the three compounds with high yields and strong antitumor activities are simple and show a great potential for meeting the needs of industrial manufacture of these drugs.展开更多
The methanol extract form the leaves of Phytolacca icosandra L.,afforded the unprecedented artificial triterpenoid fatty acid ester 1 derived from the new natural triterpenoid phytolaccagenic acid 3-O-myristate(1a),al...The methanol extract form the leaves of Phytolacca icosandra L.,afforded the unprecedented artificial triterpenoid fatty acid ester 1 derived from the new natural triterpenoid phytolaccagenic acid 3-O-myristate(1a),along with the three known triterpenoids serjanic,acinosolic and phytolaccagenic acid(2-4).Their structures were stablished by HR-EI-MS,1D and 2D NMR techniques.The possible mechanistic formation of 1 is proposed,and the in vitro toxicity of all compounds was assessed using the brine shrimp lethality assay(BSLA).展开更多
Liquid-liquid equilibrium data of two ternary systems methyl palmitate+ethanol+glycerol and methyl stearate+ethanol+glycerol at(318.2 and 333.2)K and atmospheric pressure were measured. The values of distribution coef...Liquid-liquid equilibrium data of two ternary systems methyl palmitate+ethanol+glycerol and methyl stearate+ethanol+glycerol at(318.2 and 333.2)K and atmospheric pressure were measured. The values of distribution coefficient and selectivity were calculated, which indicates that glycerol can be separated from fatty acid ester by using ethanol as an extraction solvent. The consistency of the isothermal tie-line data were checked by the Othmer-Tobias equation. The correlation coefficients R2 are higher than 0.993,9 for all the fitted curves. The NRTL activity coefficient model was applied to the correlation of the measured tie-line data. The root mean square deviation(RMSD)values are less than 0.007 for all the systems, which shows a good predictive capability of this model for such systems.展开更多
The fatty acid profile in breast milk of nursing mothers who participated in a Cohort for Vitamin A (COVA) study at the fourth and ninth month of lactation was investigated. Breast milk samples were collected by manua...The fatty acid profile in breast milk of nursing mothers who participated in a Cohort for Vitamin A (COVA) study at the fourth and ninth month of lactation was investigated. Breast milk samples were collected by manual expression and stored at - 20°C until analysis. The fat was extracted from the milk and methylated using the American Oil Chemists’ Society (AOCS) Official Methods with modifications. The separation, identification and quantification of the fatty acid methyl esters was performed by gas chromatography coupled with mass spectrometry (GC-MS). Fat contents of human milk increased significantly between the fourth and ninth month of lactation 0.38 and 1.21 mg·mL<sup>-1</sup> respectively;P 0.05) than the average percent of the total unsaturated FAs (48.93%). Similarly, at the 9th month the percentage average of the total saturated fatty acids (15.18%) was significantly lower (P < 0.05) than the average percent of the total unsaturated FAs (31.05%). The results obtained in this study demonstrated that the fat content in breast milk significantly increased in the 9th compared to the 4th month of lactation. The fatty profile was also significantly different with the omega 6 being the dominant at the 9th month compared with the omega - 9 being dominant at the 4th month of lactation.展开更多
This article reports a high yielding technique of synthesizing zirconium dodecyl sulphate (“ZDS”) for in situ transesterification of Nannochloropsis occulata and Chlorella vulgaris for fatty acid methyl ester (FAME)...This article reports a high yielding technique of synthesizing zirconium dodecyl sulphate (“ZDS”) for in situ transesterification of Nannochloropsis occulata and Chlorella vulgaris for fatty acid methyl ester (FAME) production. ZDS produced a significantly higher FAME yield in N. occulata than in C. vulgaris (p = 0.008). The varying performance of ZDS in the two species could be due to their different cell wall chemistries. Sodium dodecyl sulphate (SDS) in H2SO4 for FAME enhancement from the two species was also studied. Treatment with SDS in H2SO4 increased the FAME production rate in both species. Residual protein content after the in situ transesterification in C. vulgaris and N. occulata reduced respectively by 6.5% and 10%. The carbohydrate content was reduced by 71% in C. vulgaris and 65% in N. occulata. The water tolerance of the process when using H2SO4, with or without SDS, was evaluated by hydrating the two species with 10% - 30% distilled water (w/w dry algae). The FAME concentration began to diminish only at 30% water content in both species. Furthermore, the presence of a small amount of water in the biomass or methanol increased the lipid extraction efficiency, improving the FAME yield, rather than inhibiting the reaction.展开更多
The distributions of lipids in surface and subsurface sediments from the northern South China Sea were determined. The n-alkanes were in bimodal distribution that is characterized by a centre at n-C16 –n-C20 with max...The distributions of lipids in surface and subsurface sediments from the northern South China Sea were determined. The n-alkanes were in bimodal distribution that is characterized by a centre at n-C16 –n-C20 with maximum at C18(or C19) and n-C27 –n-C31 as well as at C29(or C31). The short-chain alkanes suffered from significant losses due to their slow deposition in the water column, and their presence with a slight even carbon predominance in shallow seafloor sediments was ascribed mainly to the direct input from the benthos. The long-chain alkanes with odd predominance indicate transportion of terrigenous organic matter. Immature hopanoid biomarkers reflect the intense microbial activity for bacteria–derived organic matter and the gradual increase of maturity with burial depth. Abundant n-fatty acid methyl esters(n-FAMEs) that are in distributions coincident with fatty acids were detected in all samples. We proposed that the observed FAMEs originated from the methyl esterification of fatty acids; methanol production by methanotrophs and methanogenic archaea related to the anaerobic oxidation of methane, and sulfate reduction provided an O–methyl donor for methylation of fatty acids. The CH4 released from hydrate dissociation at oxygen isotope stage II of Cores ZD3 and ZS5, which had been confirmed by the occurrence of negative δ13C excursion and spherical pyrite aggregates, could have accelerated the above process and thus maximized the relative content of FAMEs at ZD3-2(400–420 cm depth) and ZS5-2(241–291 cm depth).展开更多
The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were eva...The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were evaluated to understand the relationship between microbial community and soil properties. MBC and MBN were measured using fumigation extraction, and microbial community was analyzed by the method of fatty acid methyl ester (FAME). The contents of organic C, total N, MBC, MBN, total FAME, fungal FAME, bacterial FAME and Gram-negative bacterial FAME at the natural succession sites were higher than those of the agricultural land, but lower than those of the natural vegetation sites. The MBC, MBN and total FAME were closely correlated with organic C and total N. Furthermore, organic C and total N were found to be positively correlated with fungal FAME, bacterial FAME, fungal/bacterial and Gram-negative bacterial FAME. Natural succession would be useful for improving soil microbial properties and might be an important alternative for sustaining soil quality on the semi-arid Loess Plateau in China.展开更多
Biodiesel(fatty acid alkyl esters),an alternate to fossil fuel,has the tendency of autoxidation and hence requires antioxidants for long term storage.The influence of synthetic and natural antioxidants on the oxidativ...Biodiesel(fatty acid alkyl esters),an alternate to fossil fuel,has the tendency of autoxidation and hence requires antioxidants for long term storage.The influence of synthetic and natural antioxidants on the oxidative stability was analysed for fresh FAMEs(fatty acid methyl esters)obtained from hevea brasiliensis at 140 C.Higher activity was observed for synthetic antioxidants following the order of GA】BHT】DTBP】Q】GT-M】PH-M】GT-C,whereas the oxidative stability of stored FAMEs samples measured at 110 C reveals a nearly inverse trend.Storage stability was tested for the FAMEs obtained from hevea brasiliensis stored at 30 C,after addition of synthetic and natural antioxidants—butylated hydroxytoluene(BHT),2,6-di-tert-butylphenol(DTBP),quercetin(Q),gallic acid(GA),methanol extracts from green tea(GTM),pomegranate hull(PH-M),and chloroform extract of green tea(GT-C).Antioxidant activities above 1500 ppm was in the order of DTBP】BHT】GA】GT-C】GT-M】Q】PH-M.Synthetic antioxidants have been found more efficient to improve the storage stability of FAMEs obtained from hevea brasiliensis.DTBP in particular has the highest protection factor.展开更多
The evaporation characteristics of fatty acid methyl ester(FAME)mixed with four concentrations of ethanol at 873 K and normal atmospheric pressure are studied herein.FAME is used as base oils,and et hanol mass fractio...The evaporation characteristics of fatty acid methyl ester(FAME)mixed with four concentrations of ethanol at 873 K and normal atmospheric pressure are studied herein.FAME is used as base oils,and et hanol mass fractions vary from 10%,20%,30%to 40%。The experimental results show that the evaporation process of the binary component droplets of FAME-ethanol can be divided into two stages:a fuctuation evaporation stage,and an equilibrium evaporation stage.In these four concentration gradients,micro-explosions occur in the droplet evaporation process.The fuctuation evaporation stage is divided into two stages:a strong fuctuation stage and a weak fluctuation stage.After the micro-explosion,there is still a small amount of ethanol in the droplet.Due to the surface tension of the droplet,a small amount of ethanol cannot make the droplet violently fuctuate.The results show that the earlier the droplet micro-explosion occurs,the more intense it is,and the shorter the lifetime of the droplet is.Different concentrations of ethanol have different improvements in droplet evaporation characteristics.Generally,the higher the ethanol concentration is,the shorter the lifetime of the droplet is.However,increasing the ethanol concentration from 20%to 30%has the most obvious effect on the lifetime of the droplet.展开更多
Abstract The phase behavior of twelve synthesized β- sitosteryl fatty acid esters with acyl moieties with different chain lengths (C2:0-C18:0) and different degrees of unsaturation (C18:1-C18:3) were investig...Abstract The phase behavior of twelve synthesized β- sitosteryl fatty acid esters with acyl moieties with different chain lengths (C2:0-C18:0) and different degrees of unsaturation (C18:1-C18:3) were investigated in pure and mixed Langmuir monolayers with phospholipids. The surface-pressure isotherms showed that short chain fl- sitosteryl fatty acid esters gave smaller mean molecular areas and had decreased monolayer stability and the long chain steryl esters did not produce collapsed plateaus. All the steryl esters displayed strong condensing effects, but there was a pronounced structural dependency: medium chain esters (C8 and C 10) were less efficient than short and long chain esters. Atomic force microscopy imaging demonstrated that monolayers mixed with dipalmitoyl phosphatidylcholine (DPPC) displayed both DPPC-rich and steryl lipid-rich domains. However, the height and area differences between the two phases and the roughness and morphologic patterns were very dependent on the steryl lipid concentrations as well as the length, the degree of unsaturation and the molecular conformations of the acyl segments. These findings not only provide a better understanding of the interactions between phytosteryl hydrophobic derivatives and biomembranes, but also may be of general use for the design and engineering of phytosterol structural derivations for specific food and pharmaceutical applications.展开更多
In principle, the free fatty acids, diterpene fatty acid esters and triglycerides from green coffee oil can be separated effectively, by a suitable separation process, due to the differences between molar mass and vap...In principle, the free fatty acids, diterpene fatty acid esters and triglycerides from green coffee oil can be separated effectively, by a suitable separation process, due to the differences between molar mass and vapor pressures. In addition, in the case of component separation by molecular distillation, boiling point is replaced by evaporation rate at a given temperature. Several experiments and theoretical analyses have been carried out to identify the impact of important parameters (mean free path, evaporation rate, relative volatility and Knudsen number), which determine the performance of these processes and degree of separation. In this work, a process development based on molecular distillation, for the enrichment of coffee diterpenes from green coffee oil is presented. The distillates were enriched in diterpene fatty acid esters and free fatty acids, while the residues were enriched in high molar mass triglycerides.展开更多
The effectiveness of adsorptive treatment of waste cooking oils was assessed in terms of suitability for biodiesel production. New technologies involving standard diesel engines have been developed using biofuel produ...The effectiveness of adsorptive treatment of waste cooking oils was assessed in terms of suitability for biodiesel production. New technologies involving standard diesel engines have been developed using biofuel products from vegetable oils and waste animal fats based on environmental and economic considerations. The potential application of used rapeseed oil after treatment with a mixture of active carbon (AR) and magnesium silicate (MG) as energy source was studied. The results were compared with substrates standard in the Vogel&Noot GmbH technology for the transesterification of oils and fats.展开更多
A greenhouse pot experiment was conducted to evaluate pyrene degradation, microbial biomass, basal soil respiration, metabolic quotient (qCO2), soil enzyme activities, and the FAME patterns of rhizospheric soil and ...A greenhouse pot experiment was conducted to evaluate pyrene degradation, microbial biomass, basal soil respiration, metabolic quotient (qCO2), soil enzyme activities, and the FAME patterns of rhizospheric soil and nonrhizospheric soil. The results showed that the pyrene concentrations in soil decreased with time extending and were very significant less in rhizospheric soil grown with maize plants (p〈0.01). At the end of the 45-day experiment, the ratios of pyrene degradation were 61.25% and 35.58% in rhizospheric and nonrhizospheric soil, respectively. Maize enhanced the decrease of pyrene concentration and increased the degradation rate of pyrene in soil. During the experimental period, a relatively large amount of microbial biomass biomass (Craig), basal soil respiration, the Cmic/Corg ratio, enzyme (urease, dehydrogenase, polyphenol oxidase, and catalase) activities were detected in rbizospheric soil. Metabolic quotient was lower in rhizospheric soil than in nonrhizospheric soil at the whole experimental period. Soil microbial communities in rhizospheric soil and nonrhizospheric soil were characterized using fatty acid methyl ester (FAME) analysis. Fatty acid profiles demonstrated that soil microbial community structure was significantly altered in pyrene contaminated soil with maize. Fatty acid indicators for fungi and the ratio of fungi to bacteria significant increased, and fatty acid indicators for bacteria and Gram-negative bacteria significantly decreased. The effect gradually increased and got very significant (p〈0.01) with the time extending. The differences of fatty acid indicators for arbuscular mycorrhizal fungi (AMF), Gram-positive bacteria and actinomycetes gradually increased, and the differences reached significant level (p〈0.05) at the end of the experiment (45 d).展开更多
Processing polyvinyl chloride(PVC)artificial material requires plasticizer that softens the PVC coating.Currently,utilizing unsaturated fatty acid methyl esters to obtain epoxidized fatty acid methyl ester(EFAME)bio-p...Processing polyvinyl chloride(PVC)artificial material requires plasticizer that softens the PVC coating.Currently,utilizing unsaturated fatty acid methyl esters to obtain epoxidized fatty acid methyl ester(EFAME)bio-plasticizers constitutes an environmentally responsible solution to substitute conventional ortho-phthalates that are endocrine disruptors or probable carcinogens.However,commercial EFAMEs,even with the highest epoxy value(ca.5.5-5.8%)so far,still suffer from fast leaching from the PVC matrix,burdening the environment and shortening lifespan of the artificial material.Here,we report a proof-of-principle demonstration of a new strategy to obtain migration-resistant EFAME that harnesses the midchain hydroxyl of methyl ricinoleate and covalently attachment of a pendant acetate ester.Despite a low epoxy value(3.0%),the engineered bio-plasticizer displays significantly suppressed migration in multiple scenarios compared with one conventional EFAME with much higher epoxy value(5.8%).Circumventing the limit confronting previous strategy that highlights the sole contribution of epoxy value to achievable migration resistance,the rationale herein may provide guidance for designing new EFAMEs with comparable performance to ortho-phthalates,thus bringing the old and oft-maligned PVC artificial material industry one step closer to sustainability.展开更多
Biochar amendments to soils may alter soil function and fertility in various ways, including through induced changes in the microbial community. We assessed microbial activity and community composition of two distinct...Biochar amendments to soils may alter soil function and fertility in various ways, including through induced changes in the microbial community. We assessed microbial activity and community composition of two distinct clayey soil types, an Aridisol from Colorado (CO) in the U.S. Central Great Plains, and an Alfisol from Virginia (VA) in the southeastern USA following the application of switchgrass (Panicum virgatum) biochar. The switchgrass biochar was applied at four levels, 0%,0, 2.5%, 5%, and 10%, approximately equivalent to biochar additions of 0, 25, 50, and 100 t ha^-1, respectively, to the soils grown with wheat (Triticum aestivum) in an eight-week growth chamber experiment. We measured wheat shoot biomass and nitrogen (N) content and soil nutrient availability and N mineralization rates, and characterized the microbial fatty acid methyl ester (FAME) profiles of the soils. Net N mineralization rates decreased in both soils in proportion to an increase in biochar levels, but the effect was more marked in the VA soil, where net N mineralization decreased from -2.1 to -38.4 mg kg^-1. The 10% biochar addition increased soil pH, electrical conductivity, Mehlich- and bicarbonate-extractable phosphorus (P), and extractable potassium (K) in both soil types. The wheat shoot biomass decreased from 17.7 to 9.1 g with incremental additions of biochar in the CO soil, but no difference was noted in plants grown in the VA soil. The FAME recovery assay indicated that the switchgrass biochar addition could introduce artifacts in analysis, so the results needed to be interpreted with caution. Non-corrected total FAME concentrations indicated a decline by 457o and 34% with 10% biochar addition in the CO and VA soils, respectively, though these differences became nonsignificant when the extraction efficiency correction factor was applied. A significant decline in the fungi:bacteria ratio was still evident upon correction in the CO soil with biochar. Switchgrass biochar had the potential to cause short-term negative impacts on plant biomass and alter soil microbial community structure unless measures were taken to add supplemental N and labile carbon (C).展开更多
Cover crops can have beneficial effects on soil microbiology by increasing carbon (C) supply, but these beneficial effects can be modulated by precipitation conditions. The objective of this study was to compare a f...Cover crops can have beneficial effects on soil microbiology by increasing carbon (C) supply, but these beneficial effects can be modulated by precipitation conditions. The objective of this study was to compare a fallow-winter wheat (Triticum aestivum L.) rotation to several cover crop-winter wheat rotations under rainfed and irrigated conditions in the semiarid US High Plains. Experiments were carried out at two sites, Sidney in Nebraska, and Akron in Colorado, USA, with three times of soil sampling in 2012--2013 at cover crop termination, wheat planting, and wheat maturity. The experiments included four single-species cover crops, a 10-species mixture, and a fallow treatment. The variables measured were soil C and nitrogen (N), soil community structure by fatty acid methyl ester (FAME) profiles, and soil β-glucosidase,β-glucosaminidase, and phosphodiesterase activities. The fallow treatment, devoid of living plants, reduced the concentrations of most FAMEs at cover crop termination. The total FAME concentration was correlated with cover crop biomass (R = 0.62 at Sidney and 0.44 at Akron). By the time of wheat planting, there was a beneficial effect of irrigation, which caused an increase in myeorrhizal and protozoan markers. At wheat maturity, the cover crop and irrigation effects on soil FAMEs had subsided, but irrigation had a positive effect on the β-glucosidase and phosphodiesterase activities at Akron, which was the drier of the two sites. Cover crops and irrigation were slow to impact soil C concentration. Our results show that cover crops had a short-lived effect on soil microbial communities in semiarid wheat-based rotations and irrigation could enhance soil enzyme activity. In the semiarid environment, longer time spans may have been needed to see beneficial effects of cover crops on soil microbial community structure, soil enzyme activities, and soil C sequestration.展开更多
As an imitation of genuine leather,polyvinyl chloride(PVC)artificial materials are versatile,but suffers from being flammable due to the presence of large amounts of combustible plasticizers.Under such circumstance,in...As an imitation of genuine leather,polyvinyl chloride(PVC)artificial materials are versatile,but suffers from being flammable due to the presence of large amounts of combustible plasticizers.Under such circumstance,intrinsically flame-retardant plasticizers displaying dual functions have been a subject of intensive research interest.However,previous strategies attempting to covalently attach flame-retardant moiety to plasticizers invariably required either expensive starting materials or laborious and tedious procedures,ultimately limiting their scale-up application in industry.In addition,driven by escalating demand of halogen-free flame retardants worldwide from an environmental health perspective,previously reported intrinsically flame-retardant plasticizers were mainly halogenfree,less attractive in PVC artificial material industry simply because PVC itself is a halogen-containing polymer.Here,we report an approach to introduce chlorine moieties into unsaturated fatty acid methyl ester by a simple addition reaction occurring on carbon-carbon double bonds,yielding a chlorine-containing,intrinsically flameretardant bio-plasticizer.When combined with di-(2-ethylhexyl)phthalate(DOP)in PVC formulations,the chlorinated fatty acid methyl ester is qualified as a co-plasticizer while conferring flame retardancy upon the PVC coatings.This approach involves only a one-step procedure that employs renewable fatty acid methyl esters and cheap chlorine gas as raw materials,thus being of great potential to enable intrinsically flame-retardant bioplasticizers on a large scale to manufacture functional PVC artificial materials for application in fire-prone scenarios.展开更多
文摘Two new triterpene fatty esters, 3β-tetradecanoyl moradiol 1 and 3β-dodecanoyl moradiol 2, were isolated from Scorzonera mongolica. Their structures were elucidated as 3β-tetradecanoyloxy-28-hydroxylolean-18-ene and 3β-dodecanoyl-28-hydroxyl-olean-18-ene on the basis of IR, MS, 1D NMR and extensive 2D NMR spectroscopic analyses.
文摘The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (IL)[C3SO3HMIM][HSO4]as catalyst.The effects of hydrogen peroxide/ethylenic unsaturation ratio,acetic acid concentration,IL concentration,recycling of the IL catalyst,and temperature on the conversion to oxirane were studied.The kinetics and thermodynamics of unsaturated FAMEs epoxidation and the kinetics of oxirane cleavage of the epoxidized FAMEs by acetic acid were also studied.The conversion of ethylenic unsaturation group to oxirane, the reaction rate of the conversion to oxirane,and the rate of hydrolysis(oxirane cleavage)were higher by using the IL catalyst.
基金Supported by the National Natural Science Foundation of China (No. 20176020) and 863 Hi-Technology Research and Deve-lopment Program of China (No. 2002AA514030)
文摘A self-made lipase preparation from Candida sp. 99-125 was used for the production of biodiesel through enzymatic esterification of fatty acids. The crude lipase powder and fermentation broth were immobilized on a cheap fiber cloth carrier. The conditions of lipase-catalyzed esterification between long-chain fatty acids and methanol in a solvent system were investigated in detail, including the temperature, pH value, substrate concentration, solvent, absorbent agent, enzyme dosage and purity, immobilization method, the mode of addition of substrate. The results show that reaction temperature, pH of lipase micro-environment, substrate concentration, enzyme dosage and purity affect the esterification strongly. Several new methods and enzymatic procedures for improving the enzymatic reaction involving the process cost are also discussed, such as fossil diesel fuel as reaction solvent, immobilization method, multi-step gradient addition of methanol. The esterification degree of 92.8% was obtained with oleic acid and methanol under the optimal reaction condition after 12.5 h reaction time. The half-life of the immobilized lipase preparation from crude free lipase powder for esterification was 15 days.
基金the National Natural Science Foundation of China(No 30370159)
文摘For making use of Ginseng resources that exhibit an antitumor activity and for finding new anticancer drugs, three new fatty acid ester compounds: 3/β-acetoxy panaxadiol ( Ⅰ ), 3β-palmitic acid aceloxy panaxadiol ( Ⅱ ) , and 3β-octadecanoic acid aceloxy panaxadiol( Ⅰ , Ⅱ, and m) were synthesized with panaxadiol, diacetyl oxide, palmityl chloride and stearyl chloride, and their structures were determined via MS, ^13C NMR, IR, TLC, and so on. The molar yields of the three compounds are 75.14%, 79. 08%, and 72. 57%, respectively. Meanwhile, the antitumor activity of the three new panaxadiol fatty acid ester derivatives and panaxadiol was compared by using the method of MTT. Tumor cell used was Vero cell line. Positive control was 5-FU, blank was an RPMI1640 culture medium, negative control was an RPMI1640 culture medium and the solvent for drugs to be tested. Compound Ⅰ has the strongest antitumor activity followed by panaxadiol; compounds Ⅱ and Ⅲ have similar and weakest antitumor activities. Furthermore, the antitumor activities of the panaxadiol fatty acid ester derivatives show positive correlation with the concentration of the test group, but show no relationship with the molecular weight of fatty acid. The methods that are used to synthesize the three compounds with high yields and strong antitumor activities are simple and show a great potential for meeting the needs of industrial manufacture of these drugs.
基金The authors would like to thank USB-DID(project S1-IC-CB-004–15)for financial support。
文摘The methanol extract form the leaves of Phytolacca icosandra L.,afforded the unprecedented artificial triterpenoid fatty acid ester 1 derived from the new natural triterpenoid phytolaccagenic acid 3-O-myristate(1a),along with the three known triterpenoids serjanic,acinosolic and phytolaccagenic acid(2-4).Their structures were stablished by HR-EI-MS,1D and 2D NMR techniques.The possible mechanistic formation of 1 is proposed,and the in vitro toxicity of all compounds was assessed using the brine shrimp lethality assay(BSLA).
基金Supported by Tianjin Natural Science Foundation(No.13JCYBJC19300)
文摘Liquid-liquid equilibrium data of two ternary systems methyl palmitate+ethanol+glycerol and methyl stearate+ethanol+glycerol at(318.2 and 333.2)K and atmospheric pressure were measured. The values of distribution coefficient and selectivity were calculated, which indicates that glycerol can be separated from fatty acid ester by using ethanol as an extraction solvent. The consistency of the isothermal tie-line data were checked by the Othmer-Tobias equation. The correlation coefficients R2 are higher than 0.993,9 for all the fitted curves. The NRTL activity coefficient model was applied to the correlation of the measured tie-line data. The root mean square deviation(RMSD)values are less than 0.007 for all the systems, which shows a good predictive capability of this model for such systems.
文摘The fatty acid profile in breast milk of nursing mothers who participated in a Cohort for Vitamin A (COVA) study at the fourth and ninth month of lactation was investigated. Breast milk samples were collected by manual expression and stored at - 20°C until analysis. The fat was extracted from the milk and methylated using the American Oil Chemists’ Society (AOCS) Official Methods with modifications. The separation, identification and quantification of the fatty acid methyl esters was performed by gas chromatography coupled with mass spectrometry (GC-MS). Fat contents of human milk increased significantly between the fourth and ninth month of lactation 0.38 and 1.21 mg·mL<sup>-1</sup> respectively;P 0.05) than the average percent of the total unsaturated FAs (48.93%). Similarly, at the 9th month the percentage average of the total saturated fatty acids (15.18%) was significantly lower (P < 0.05) than the average percent of the total unsaturated FAs (31.05%). The results obtained in this study demonstrated that the fat content in breast milk significantly increased in the 9th compared to the 4th month of lactation. The fatty profile was also significantly different with the omega 6 being the dominant at the 9th month compared with the omega - 9 being dominant at the 4th month of lactation.
文摘This article reports a high yielding technique of synthesizing zirconium dodecyl sulphate (“ZDS”) for in situ transesterification of Nannochloropsis occulata and Chlorella vulgaris for fatty acid methyl ester (FAME) production. ZDS produced a significantly higher FAME yield in N. occulata than in C. vulgaris (p = 0.008). The varying performance of ZDS in the two species could be due to their different cell wall chemistries. Sodium dodecyl sulphate (SDS) in H2SO4 for FAME enhancement from the two species was also studied. Treatment with SDS in H2SO4 increased the FAME production rate in both species. Residual protein content after the in situ transesterification in C. vulgaris and N. occulata reduced respectively by 6.5% and 10%. The carbohydrate content was reduced by 71% in C. vulgaris and 65% in N. occulata. The water tolerance of the process when using H2SO4, with or without SDS, was evaluated by hydrating the two species with 10% - 30% distilled water (w/w dry algae). The FAME concentration began to diminish only at 30% water content in both species. Furthermore, the presence of a small amount of water in the biomass or methanol increased the lipid extraction efficiency, improving the FAME yield, rather than inhibiting the reaction.
基金supported by the National Major Fundamental Research and Development Project of China (No. 2009CB219501)the National Natural Science Foundation of China (No. 40976035 and No. 41276046)
文摘The distributions of lipids in surface and subsurface sediments from the northern South China Sea were determined. The n-alkanes were in bimodal distribution that is characterized by a centre at n-C16 –n-C20 with maximum at C18(or C19) and n-C27 –n-C31 as well as at C29(or C31). The short-chain alkanes suffered from significant losses due to their slow deposition in the water column, and their presence with a slight even carbon predominance in shallow seafloor sediments was ascribed mainly to the direct input from the benthos. The long-chain alkanes with odd predominance indicate transportion of terrigenous organic matter. Immature hopanoid biomarkers reflect the intense microbial activity for bacteria–derived organic matter and the gradual increase of maturity with burial depth. Abundant n-fatty acid methyl esters(n-FAMEs) that are in distributions coincident with fatty acids were detected in all samples. We proposed that the observed FAMEs originated from the methyl esterification of fatty acids; methanol production by methanotrophs and methanogenic archaea related to the anaerobic oxidation of methane, and sulfate reduction provided an O–methyl donor for methylation of fatty acids. The CH4 released from hydrate dissociation at oxygen isotope stage II of Cores ZD3 and ZS5, which had been confirmed by the occurrence of negative δ13C excursion and spherical pyrite aggregates, could have accelerated the above process and thus maximized the relative content of FAMEs at ZD3-2(400–420 cm depth) and ZS5-2(241–291 cm depth).
基金Supported by the National Natural Science Foundation of China (Nos.50639070-4 and 30671666)the National Major Program on Pollution Control and Management of Water Body (No.2008ZX07104-003-03)
文摘The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were evaluated to understand the relationship between microbial community and soil properties. MBC and MBN were measured using fumigation extraction, and microbial community was analyzed by the method of fatty acid methyl ester (FAME). The contents of organic C, total N, MBC, MBN, total FAME, fungal FAME, bacterial FAME and Gram-negative bacterial FAME at the natural succession sites were higher than those of the agricultural land, but lower than those of the natural vegetation sites. The MBC, MBN and total FAME were closely correlated with organic C and total N. Furthermore, organic C and total N were found to be positively correlated with fungal FAME, bacterial FAME, fungal/bacterial and Gram-negative bacterial FAME. Natural succession would be useful for improving soil microbial properties and might be an important alternative for sustaining soil quality on the semi-arid Loess Plateau in China.
文摘Biodiesel(fatty acid alkyl esters),an alternate to fossil fuel,has the tendency of autoxidation and hence requires antioxidants for long term storage.The influence of synthetic and natural antioxidants on the oxidative stability was analysed for fresh FAMEs(fatty acid methyl esters)obtained from hevea brasiliensis at 140 C.Higher activity was observed for synthetic antioxidants following the order of GA】BHT】DTBP】Q】GT-M】PH-M】GT-C,whereas the oxidative stability of stored FAMEs samples measured at 110 C reveals a nearly inverse trend.Storage stability was tested for the FAMEs obtained from hevea brasiliensis stored at 30 C,after addition of synthetic and natural antioxidants—butylated hydroxytoluene(BHT),2,6-di-tert-butylphenol(DTBP),quercetin(Q),gallic acid(GA),methanol extracts from green tea(GTM),pomegranate hull(PH-M),and chloroform extract of green tea(GT-C).Antioxidant activities above 1500 ppm was in the order of DTBP】BHT】GA】GT-C】GT-M】Q】PH-M.Synthetic antioxidants have been found more efficient to improve the storage stability of FAMEs obtained from hevea brasiliensis.DTBP in particular has the highest protection factor.
基金the Foundation Research Project of Jiangsu Province(the Natural Science Fund,No.BK20180982)。
文摘The evaporation characteristics of fatty acid methyl ester(FAME)mixed with four concentrations of ethanol at 873 K and normal atmospheric pressure are studied herein.FAME is used as base oils,and et hanol mass fractions vary from 10%,20%,30%to 40%。The experimental results show that the evaporation process of the binary component droplets of FAME-ethanol can be divided into two stages:a fuctuation evaporation stage,and an equilibrium evaporation stage.In these four concentration gradients,micro-explosions occur in the droplet evaporation process.The fuctuation evaporation stage is divided into two stages:a strong fuctuation stage and a weak fluctuation stage.After the micro-explosion,there is still a small amount of ethanol in the droplet.Due to the surface tension of the droplet,a small amount of ethanol cannot make the droplet violently fuctuate.The results show that the earlier the droplet micro-explosion occurs,the more intense it is,and the shorter the lifetime of the droplet is.Different concentrations of ethanol have different improvements in droplet evaporation characteristics.Generally,the higher the ethanol concentration is,the shorter the lifetime of the droplet is.However,increasing the ethanol concentration from 20%to 30%has the most obvious effect on the lifetime of the droplet.
文摘Abstract The phase behavior of twelve synthesized β- sitosteryl fatty acid esters with acyl moieties with different chain lengths (C2:0-C18:0) and different degrees of unsaturation (C18:1-C18:3) were investigated in pure and mixed Langmuir monolayers with phospholipids. The surface-pressure isotherms showed that short chain fl- sitosteryl fatty acid esters gave smaller mean molecular areas and had decreased monolayer stability and the long chain steryl esters did not produce collapsed plateaus. All the steryl esters displayed strong condensing effects, but there was a pronounced structural dependency: medium chain esters (C8 and C 10) were less efficient than short and long chain esters. Atomic force microscopy imaging demonstrated that monolayers mixed with dipalmitoyl phosphatidylcholine (DPPC) displayed both DPPC-rich and steryl lipid-rich domains. However, the height and area differences between the two phases and the roughness and morphologic patterns were very dependent on the steryl lipid concentrations as well as the length, the degree of unsaturation and the molecular conformations of the acyl segments. These findings not only provide a better understanding of the interactions between phytosteryl hydrophobic derivatives and biomembranes, but also may be of general use for the design and engineering of phytosterol structural derivations for specific food and pharmaceutical applications.
文摘In principle, the free fatty acids, diterpene fatty acid esters and triglycerides from green coffee oil can be separated effectively, by a suitable separation process, due to the differences between molar mass and vapor pressures. In addition, in the case of component separation by molecular distillation, boiling point is replaced by evaporation rate at a given temperature. Several experiments and theoretical analyses have been carried out to identify the impact of important parameters (mean free path, evaporation rate, relative volatility and Knudsen number), which determine the performance of these processes and degree of separation. In this work, a process development based on molecular distillation, for the enrichment of coffee diterpenes from green coffee oil is presented. The distillates were enriched in diterpene fatty acid esters and free fatty acids, while the residues were enriched in high molar mass triglycerides.
文摘The effectiveness of adsorptive treatment of waste cooking oils was assessed in terms of suitability for biodiesel production. New technologies involving standard diesel engines have been developed using biofuel products from vegetable oils and waste animal fats based on environmental and economic considerations. The potential application of used rapeseed oil after treatment with a mixture of active carbon (AR) and magnesium silicate (MG) as energy source was studied. The results were compared with substrates standard in the Vogel&Noot GmbH technology for the transesterification of oils and fats.
文摘A greenhouse pot experiment was conducted to evaluate pyrene degradation, microbial biomass, basal soil respiration, metabolic quotient (qCO2), soil enzyme activities, and the FAME patterns of rhizospheric soil and nonrhizospheric soil. The results showed that the pyrene concentrations in soil decreased with time extending and were very significant less in rhizospheric soil grown with maize plants (p〈0.01). At the end of the 45-day experiment, the ratios of pyrene degradation were 61.25% and 35.58% in rhizospheric and nonrhizospheric soil, respectively. Maize enhanced the decrease of pyrene concentration and increased the degradation rate of pyrene in soil. During the experimental period, a relatively large amount of microbial biomass biomass (Craig), basal soil respiration, the Cmic/Corg ratio, enzyme (urease, dehydrogenase, polyphenol oxidase, and catalase) activities were detected in rbizospheric soil. Metabolic quotient was lower in rhizospheric soil than in nonrhizospheric soil at the whole experimental period. Soil microbial communities in rhizospheric soil and nonrhizospheric soil were characterized using fatty acid methyl ester (FAME) analysis. Fatty acid profiles demonstrated that soil microbial community structure was significantly altered in pyrene contaminated soil with maize. Fatty acid indicators for fungi and the ratio of fungi to bacteria significant increased, and fatty acid indicators for bacteria and Gram-negative bacteria significantly decreased. The effect gradually increased and got very significant (p〈0.01) with the time extending. The differences of fatty acid indicators for arbuscular mycorrhizal fungi (AMF), Gram-positive bacteria and actinomycetes gradually increased, and the differences reached significant level (p〈0.05) at the end of the experiment (45 d).
基金financial support of this work by National Key Research and Development Program of China(2017YFB0308600)National Natural Science Foundation of China(21878196)Fundamental Research Funds for the Central Universities,China(20826041C4159).
文摘Processing polyvinyl chloride(PVC)artificial material requires plasticizer that softens the PVC coating.Currently,utilizing unsaturated fatty acid methyl esters to obtain epoxidized fatty acid methyl ester(EFAME)bio-plasticizers constitutes an environmentally responsible solution to substitute conventional ortho-phthalates that are endocrine disruptors or probable carcinogens.However,commercial EFAMEs,even with the highest epoxy value(ca.5.5-5.8%)so far,still suffer from fast leaching from the PVC matrix,burdening the environment and shortening lifespan of the artificial material.Here,we report a proof-of-principle demonstration of a new strategy to obtain migration-resistant EFAME that harnesses the midchain hydroxyl of methyl ricinoleate and covalently attachment of a pendant acetate ester.Despite a low epoxy value(3.0%),the engineered bio-plasticizer displays significantly suppressed migration in multiple scenarios compared with one conventional EFAME with much higher epoxy value(5.8%).Circumventing the limit confronting previous strategy that highlights the sole contribution of epoxy value to achievable migration resistance,the rationale herein may provide guidance for designing new EFAMEs with comparable performance to ortho-phthalates,thus bringing the old and oft-maligned PVC artificial material industry one step closer to sustainability.
文摘Biochar amendments to soils may alter soil function and fertility in various ways, including through induced changes in the microbial community. We assessed microbial activity and community composition of two distinct clayey soil types, an Aridisol from Colorado (CO) in the U.S. Central Great Plains, and an Alfisol from Virginia (VA) in the southeastern USA following the application of switchgrass (Panicum virgatum) biochar. The switchgrass biochar was applied at four levels, 0%,0, 2.5%, 5%, and 10%, approximately equivalent to biochar additions of 0, 25, 50, and 100 t ha^-1, respectively, to the soils grown with wheat (Triticum aestivum) in an eight-week growth chamber experiment. We measured wheat shoot biomass and nitrogen (N) content and soil nutrient availability and N mineralization rates, and characterized the microbial fatty acid methyl ester (FAME) profiles of the soils. Net N mineralization rates decreased in both soils in proportion to an increase in biochar levels, but the effect was more marked in the VA soil, where net N mineralization decreased from -2.1 to -38.4 mg kg^-1. The 10% biochar addition increased soil pH, electrical conductivity, Mehlich- and bicarbonate-extractable phosphorus (P), and extractable potassium (K) in both soil types. The wheat shoot biomass decreased from 17.7 to 9.1 g with incremental additions of biochar in the CO soil, but no difference was noted in plants grown in the VA soil. The FAME recovery assay indicated that the switchgrass biochar addition could introduce artifacts in analysis, so the results needed to be interpreted with caution. Non-corrected total FAME concentrations indicated a decline by 457o and 34% with 10% biochar addition in the CO and VA soils, respectively, though these differences became nonsignificant when the extraction efficiency correction factor was applied. A significant decline in the fungi:bacteria ratio was still evident upon correction in the CO soil with biochar. Switchgrass biochar had the potential to cause short-term negative impacts on plant biomass and alter soil microbial community structure unless measures were taken to add supplemental N and labile carbon (C).
文摘Cover crops can have beneficial effects on soil microbiology by increasing carbon (C) supply, but these beneficial effects can be modulated by precipitation conditions. The objective of this study was to compare a fallow-winter wheat (Triticum aestivum L.) rotation to several cover crop-winter wheat rotations under rainfed and irrigated conditions in the semiarid US High Plains. Experiments were carried out at two sites, Sidney in Nebraska, and Akron in Colorado, USA, with three times of soil sampling in 2012--2013 at cover crop termination, wheat planting, and wheat maturity. The experiments included four single-species cover crops, a 10-species mixture, and a fallow treatment. The variables measured were soil C and nitrogen (N), soil community structure by fatty acid methyl ester (FAME) profiles, and soil β-glucosidase,β-glucosaminidase, and phosphodiesterase activities. The fallow treatment, devoid of living plants, reduced the concentrations of most FAMEs at cover crop termination. The total FAME concentration was correlated with cover crop biomass (R = 0.62 at Sidney and 0.44 at Akron). By the time of wheat planting, there was a beneficial effect of irrigation, which caused an increase in myeorrhizal and protozoan markers. At wheat maturity, the cover crop and irrigation effects on soil FAMEs had subsided, but irrigation had a positive effect on the β-glucosidase and phosphodiesterase activities at Akron, which was the drier of the two sites. Cover crops and irrigation were slow to impact soil C concentration. Our results show that cover crops had a short-lived effect on soil microbial communities in semiarid wheat-based rotations and irrigation could enhance soil enzyme activity. In the semiarid environment, longer time spans may have been needed to see beneficial effects of cover crops on soil microbial community structure, soil enzyme activities, and soil C sequestration.
基金financial support of this work by National Key Research and Development Program of China(2017YFB0308600)Science and Technology Planning Project of Sichuan Province(20YYJC3727)+1 种基金National Natural Science Foundation of China(21878196)Fundamental Research Funds for the Central Universities,China(20826041C4159).
文摘As an imitation of genuine leather,polyvinyl chloride(PVC)artificial materials are versatile,but suffers from being flammable due to the presence of large amounts of combustible plasticizers.Under such circumstance,intrinsically flame-retardant plasticizers displaying dual functions have been a subject of intensive research interest.However,previous strategies attempting to covalently attach flame-retardant moiety to plasticizers invariably required either expensive starting materials or laborious and tedious procedures,ultimately limiting their scale-up application in industry.In addition,driven by escalating demand of halogen-free flame retardants worldwide from an environmental health perspective,previously reported intrinsically flame-retardant plasticizers were mainly halogenfree,less attractive in PVC artificial material industry simply because PVC itself is a halogen-containing polymer.Here,we report an approach to introduce chlorine moieties into unsaturated fatty acid methyl ester by a simple addition reaction occurring on carbon-carbon double bonds,yielding a chlorine-containing,intrinsically flameretardant bio-plasticizer.When combined with di-(2-ethylhexyl)phthalate(DOP)in PVC formulations,the chlorinated fatty acid methyl ester is qualified as a co-plasticizer while conferring flame retardancy upon the PVC coatings.This approach involves only a one-step procedure that employs renewable fatty acid methyl esters and cheap chlorine gas as raw materials,thus being of great potential to enable intrinsically flame-retardant bioplasticizers on a large scale to manufacture functional PVC artificial materials for application in fire-prone scenarios.