The Qinghai Nanshan fault is a larger fault in the Northeastern Xizang Plateau.In previous studies,its movement characteristics are mainly investigated with geological and seismic observations,and the tectonic transfo...The Qinghai Nanshan fault is a larger fault in the Northeastern Xizang Plateau.In previous studies,its movement characteristics are mainly investigated with geological and seismic observations,and the tectonic transformation role of the fault on its east is not yet clear.This study uses data fusion to obtain denser GPS observations near the Qinghai Nanshan fault.Based on tectonic characteristics,we establish a block model to investigate the fault slip rate,locking degree,and slip deficit.The results show that the Qinghai Nanshan fault slip rate is characterized by sinistral and convergent movement.Both the sinistral and convergent rates display a decreasing trend from west to east.The locking degree and slip deficit are higher in the western segment(with an average of about 0.74 and 1.1 mm/a)and lower in the eastern segment.Then,we construct a strain rate field using GPS observations to analyze the regional strain characteristics.The results indicate that along the fault,the western segment shows a larger shear strain rate and negative dilation rate.Regional earthquake records show that the frequency of earthquakes is lower near the fault.The joint results suggest that the western segment may have a higher earthquake risk.In addition,the insignificant fault slip rate in the eastern segment may indicate that it does not participate in the tectonic transformation among the Riyueshan,Lajishan,and West Qinling faults.展开更多
Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading fau...Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method.展开更多
The condition characteristics of hydraulic systems reflect running condition for the hydraulic equipment directly. It is the key for condition monitoring and early fault diagnosis to select characteristics reasonably....The condition characteristics of hydraulic systems reflect running condition for the hydraulic equipment directly. It is the key for condition monitoring and early fault diagnosis to select characteristics reasonably. In this paper, the types, properties of characteristics in hydraulic equipment are analysed, and some considerations in their selection are presented.展开更多
Coal and oil shale are two common sedimentary energy sources which are often symbiotically developed in M esozoic- Cenozoic continental fault basins. However, the mechanisms and characteristics of the symbiotic develo...Coal and oil shale are two common sedimentary energy sources which are often symbiotically developed in M esozoic- Cenozoic continental fault basins. However, the mechanisms and characteristics of the symbiotic development are not yet clearly known. In this research study, the typical continental fault basins of eastern China were chosen as examples for the purpose of conducting an examination of the coal and oil shale symbiotic assemblage types, genetic environmental differences, and transformation mechanisms, as well as the development and occurrence characteristics o f different assemblage types. Through a large number of investigations, systematic experimental testing, and sequence stratigraphy studies, the following conclusions were obtained:(1) There were five types of coal and oil shale symbiotic assemblages observed in the continental fault basins,(2) The development of coal and oil shale deposits requires a warm and humid climate, stable structure, abundant organic matter supply, a certain water depth, and a lower terrestrial source debris supply. The observed differences were that the water depth conditions were diversified in the study area, as well as the sources, types, and content of the organic matter.(3) The rapid transformations of the coal and oil shale genetic environments were mainly controlled by the tectonic settings and climatic conditions, which were determined to control the changes in the water depths, salinity,redox conditions, and lake productivity of the genetic environments. Also, in the symbiotic assemblages, genetic environment changes had induced the development of oil shale deposits, which gradually evolved into coal genetic environments.(4) In the isochronous sequence stratigraphic framework of the coal and oil shale symbiotic assemblages, the lake expansion system tracts (EST) were determined to be the most beneficial to the growth o f all the types of assemblages and were characterized by more assemblage development phases and smaller bed thicknesses. From the early to the late stages of the EST, and from the lakesides to lake centers, the thicknesses of the coal seams in the symbiotic assemblages showed trends of thinning, while the thicknesses of the oil shale deposits exhibited increasing trends. The early stages of high stand system tracts were found to be beneficial to the development of the symbiotic assemblages of coal seams overlying the oil shale. This tract type generally presented large bed thicknesses and distribution ranges. The low stand system tract and the late high stand system tract were determined to be unconducive to the development of the symbiotic assemblages.展开更多
In order to effectively monitor the concealed fault activation process in excavation activities, based on the actual condition of a working face containing faults with high outburst danger in Xin Zhuangzi mine in Huai...In order to effectively monitor the concealed fault activation process in excavation activities, based on the actual condition of a working face containing faults with high outburst danger in Xin Zhuangzi mine in Huainan, China, we carried out all-side tracking and monitoring on the fault activation process and development trend in excavation activities by establishing a microseismic monitoring system. The results show that excavation activities have a rather great influence on the fault activation. With the working face approaching the fault, the fault activation builds up and the outburst danger increases; when the excavation activities finishes, the fault activation tends to be stable. The number of microseismic events are corresponding to the intensity of fault activation, and the distribution rules of microseismic events can effectively determine the fault occurrence in the mine. Microseismic monitoring technique is accurate in terms of detecting geologic tectonic activities, such as fault activations lying ahead during excavation activities. By utilizing this technique, we can determine outburst danger in excavation activities in time and accordingly take effective countermeasures to prevent and reduce the occurrence of outburst accidents.展开更多
The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can b...The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR.展开更多
Based on the 3 D seismic structure interpretation of Bohai Sea, combined with physical modeling of structure, structural style analysis and apatite fission track simulation, the structural characteristics and genetic ...Based on the 3 D seismic structure interpretation of Bohai Sea, combined with physical modeling of structure, structural style analysis and apatite fission track simulation, the structural characteristics and genetic mechanism of the Cenozoic strike-slip faults in Bohai Sea were investigated. The results show that Tanlu strike-slip fault experienced three stages of strike-slip activities in the Cenozoic,and the transition from left-lateral strike to right-lateral strike-slip was completed at the end of the fourth member of the Shahejie Formation. The strike-slip faults in the Bohai Sea have the characteristics of multi-stage and multi-strength stress superposition. According to the superimposed forms of different strengths, different properties and different ratios, they can be divided into three major genetic types,extension and strike-slip superimposition, extension and extrusion superimposition, extrusion and strike-slip superimposition, and fifteen typical structure patterns. Affected by multiple changes in the direction and rate of subduction of the Cenozoic Pacific plate, the difference between the Cenozoic extension and the strike-slip in the Bohai Sea area leads to the diversity of the fault system and the zoning of the depression structure. According to superimposition features of faults, the Bohai Sea area can be divided into the Liaoxi S-type weak strike-slip zone, Liaodong braided strong strike-slip zone, Boxi conjugated medium strike-slip zone, Bodong brush structure medium strike-slip zone and Bonan parallel strong strike-slip zone. These zones differ in oil and gas accumulation features.展开更多
The basin marginal fault system is the key to understand the formation and evolution of Songliao Basin.In order to investigate the influence of marginal fault system on the structural evolution of Songliao Basin,a com...The basin marginal fault system is the key to understand the formation and evolution of Songliao Basin.In order to investigate the influence of marginal fault system on the structural evolution of Songliao Basin,a comprehensive study was conducted on Shiling Town and Zhuanshanhu area of Yehe Town in Siping City of Jilin Province,where is the southeastern margin of the Songliao Basin and there are a series of well-exposed fault,fold and intrusive bodies belonging to the main marginal fault system of the Songliao Basin known as the Jiamusi-Yitong(Jia-Yi)fault zone.Through profile measurement and field investigation,samples with various lithologies and distinctive features were collected.Detailed field and laboratory works include component and microstructure analysis of these samples,rock-rock contact analysis,main strike measurement and statistics analysis.These data reveal the structural characteristics of the fold,fault and intrusive bodies in the study area.The research results show that the folds are distributed in the Mesozoic strata near the main fault of the eastern branch of the Jia-Yi fault zone,and the folded strata involve the Cretaceous Denglouku and Quantou formations.In addition,the section is dominated by high-angle strikeslip thrust faults.Light-colored veins and dark-colored veins are extensively distributed in the exposed granites.Statistical analysis of joint and fault attitudes in the study area reveals a right-lateral strike-sliping along the main fault.The large-scale right-lateral strike-slip and thrust fault system in Shiling Town occurred in right-lateral transpressive stage in Late Cretaceous.Based on the results above,tectonic evolution sequence in Shiling section of the Jia-Yi fault zone during the Mesozoic can be divided into five stages:Middle Jurassic left-lateral ductile strike-slip stage,Late Jurassic compression stage,Early Cretaceous tension stage,Early Cretaceous extension stage and Late Cretaceous right-lateral transpressive stage.These may have important constraint on understanding the Mesozoic evolution of the Songliao Basin.展开更多
Based on comparative analysis on hydrochemical characteristics of geothermal water in the north part of Liaokao fault,this research focuses on studying the indicative significance of hydrochemical characteristics for ...Based on comparative analysis on hydrochemical characteristics of geothermal water in the north part of Liaokao fault,this research focuses on studying the indicative significance of hydrochemical characteristics for the formation of geothermal water.The result shows that:(1)There is no obvious hydraulic connection between the karst geothermal water(occurred in the east part of the Liaokao fault)and the sandstone geothermal water(occurred in the west part of Liaokao fault).(2)In a close hydrological environment,caused by tectonic activities,geothermal water remains longer time in reservoir,hence the water-rock interaction is more complete,with high degree of concentrations,whereas the renewable capacity of the water is weaker.(3)There is no high temperature mantle source fluid mixed in the geothermal water.Karst geothermal water occurred deep circulatory convection along Liaokao fault and its secondary fault,therefore there is deep crust source fluid added into the geothermal water,closer to the Liaokao fault,the greater affected by the deep crust fluid.However,sandstone geothermal water has weak deep circulatory convection.展开更多
A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is u...A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is used accordingly to measure the seepage characteristics of such samples under different loading and unloading confining pressures in order to determine the variation law of the permeability coefficient.The test results show that:(1)The permeability coefficient of the S-RM samples decreases as the pressure increases,and the decrease rate of this coefficient in the initial stage of confining pressure loading is obviously higher than in the semi-late period;(2)The permeability coefficient at different confining pressure levels presents a common trend as the rock block proportion is increased,i.e.,it decreases first then it increases(the permeability coefficient of the sample with rock block proportion 40%being the smallest,70%the largest);(3)In the stage of confining pressure unloading,the recovery degree of the permeability coefficient grows with the increase of rock block proportion(the recovery rate of S-RM sample with rock block proportion 70%reaches 50.2%);(4)In the stage of confining pressure loading and unloading,the sensitivity of the permeability coefficient to the rock block proportion displays the inverse“Z”variation rule(when rock block proportion reaches 60%,the sensitivity is highest);(5)In the stage of confining pressure loading,the relationship between the permeability coefficient and confining pressure can be described by an exponential relationship.展开更多
Half-wavelength AC transmission(HWACT) is an ultra-long distance AC transmission technology, whose electrical distance is close to half-wavelength at the system power frequency. It is very important for the constructi...Half-wavelength AC transmission(HWACT) is an ultra-long distance AC transmission technology, whose electrical distance is close to half-wavelength at the system power frequency. It is very important for the construction and operation of HWACT to analyze its fault features and corresponding protection technology. In this paper, the steady-state voltage and current characteristics of the bus bar and fault point and the steady-state overvoltage distribution along the line will be analyzed when a three-phase symmetrical short-circuit fault occurs on an HWACT line. On this basis, the threephase fault characteristics for longer transmission lines are also studied.展开更多
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or...Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.展开更多
Deformation characteristics of the Sichuan-Yunnan region during the two periods 1999--2007 and 2007--2009 are analyzed with a block deformation model and GPS velocity profiles. The results show that the direction of t...Deformation characteristics of the Sichuan-Yunnan region during the two periods 1999--2007 and 2007--2009 are analyzed with a block deformation model and GPS velocity profiles. The results show that the direction of the principal compressive strain rate of the Northwest-Sichuan block - the Mid-Yunnan block - the Southwest-Yunnan block was characterized by a clockwise rotation from north to south. The Anninghe and the Zemuhe faults had some shear-strain accumulation. The southern segment of the Xiaojiang fault had mainly strike-slip movement, while the northern segment was mainly accumulating strain. The 2008 Ms8.0 Wenchuan earthquake had some influence on the mid-southern segment of the Lijiang-Xiaojinhe fault, the Anninghe fault and the Jinshajiang fault, but not the Zemuhe fault, the Xiaojiang fault and the Red River fault as much.展开更多
How to find more effective way to stabilize the borehole wall in the fault gouge section is the key technical challenge to control the stability of the borehole wall in the Wenchuan fault gouge section during the proc...How to find more effective way to stabilize the borehole wall in the fault gouge section is the key technical challenge to control the stability of the borehole wall in the Wenchuan fault gouge section during the process of core drilling. Here we try to describe the characters of deep fault gouge in fracture zones from the undisturbed fault gouge samples which are obtained during the core drilling. The X- Ray Diffraction (XRD), X-Ray Fluorescence (XRF) and Scanning Electron Microscope (SEM) provided the detailed information of the fault gouge's microscopic characteristics on the density, moisture content, expansibility, dispersity, permeability, tensile strength and other main physical-mechanical properties. Based on these systematic experimental studies above and analysis of the fault gouge instability mechanism, a new technical procedure to stabilize the borehole wall is proposed -- a low water and a low loss low permeability drilling fluid system that consists of 4% day + 0.5% CMC-HV + 2% S-1 + 3%sulfonated asphalt + 1% SMC + 0.5% X-1 + 0-5% T type lubricant + barite for core drilling in fault gouge sections.展开更多
There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure, However few...There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure, However few researches have put emphasis on the characteristics of near-fault ground motions containing velocity pulses, especially the characteristics relevant with the design response spectrum prescribed by the code. Through collection of a large number of near-fault records containing velocity pulses, the response spectra and the characteristic periods of records containing no pulses are compared with those of records containing pulses. Response spectra of near-fault records are compared with standard spectra given by code; furthermore, the response spectra and the characteristic periods of each earthquake are compared with that given by code. The result shows that at long periods (longer than 1.5 s), the response spectrum of pulse-containing records is bigger than the response spectrum of no-pulse-containing records; when the characteristic period of near-fault records is calculated, the method that does not fix frequency is more reasonable because the T1 and T2 have a lagging tendency; regardless of the site Ⅰ and site Ⅱ, the characteristic period of pulse-containing records is over twice bigger than the characteristic period given by the code,展开更多
The south coastal of Taizhou lies on the magmatic rock belt along the southeast coast of China,which has a complex regional geological structures,intense tectonic movement,and frequent magmatic activities.On the basis...The south coastal of Taizhou lies on the magmatic rock belt along the southeast coast of China,which has a complex regional geological structures,intense tectonic movement,and frequent magmatic activities.On the basis of the latest aeromagnetic data,combined with regional geology,gravity,and magnetic susceptibility information,integrated interpretation of the regional aeromagnetic anomalies and their refl ected faults was completed.According to the block features in diff erent zones of the reduction to the pole aeromagnetic data,the magnetic field characteristics and relationship with the structure division were described in detail.The different characteristics of the magnetic field are the concentrated reflection of tectonic movements,magmatic activities,and stratigraphic distributions;the fault structure,especially deep and large fault structures,was inferred and studied.The fault structures were mainly distributed in the NE,NNE,and NW directions,with approximately equal spacing between them.The magnetic anomaly is mainly characterized by the boundary,gradient zones,and beaded anomalies in a different magnetic field.The faults are not only important tectonic boundaries in this region but also tectonic belts that control the distribution of mineralization.Under the interaction of these faults,they form the basic structural pattern of the east-west zone and the north-south block.The NE faults have the largest scale and obviously control the diff erent magnetic fi elds and magmatic activities.The results can provide a reference for further study of the distribution and activity characteristics of magmatic rocks in the coastal zone.展开更多
1 Introduction The Dongshengmiao deposit is a super-large Zn-Pb polymetallic sulfide deposit which occurring in the Langshan-Zhaertaaishan metallogenic belt,and located in the western margin of the North China Platfor...1 Introduction The Dongshengmiao deposit is a super-large Zn-Pb polymetallic sulfide deposit which occurring in the Langshan-Zhaertaaishan metallogenic belt,and located in the western margin of the North China Platform.The ore-bodies of Dongshengmiao deposits are mainly hosted in the second Formation of Langshan Group.There are some studies on the geological characteristics(Peng et al.,2004),geological and展开更多
The fault zone along the northern margin of West Qinling Range is a major active fault zone in the key seismic monitoring area in the southeastern part of Gansu Province. In order to study the current activity charact...The fault zone along the northern margin of West Qinling Range is a major active fault zone in the key seismic monitoring area in the southeastern part of Gansu Province. In order to study the current activity characteristics of this fault, GPS monitoring network has been arranged along both sides of the fault and 3 measurements have been made from 1996 to 1998. The result indicates that obvious differential movement exists along the north and south sides of the fault and the eastward movement on the south side is 3.8 mm/a larger than that on the north side. In the GPS network, the shortened side is generally in the trend of EW and the extended side is basically NW to SE. The principal compressional stress trend in this area is about EW and the sinistral motion is obvious in the eastern part of the fault (near Wushan). The measured results also indicate that the displacement rate has decreased by 50% and the compressional strain has increased by 100% as compared the data of 1997 -1998 with those of 1996-1997, which shows that the compressional stress field in this region is intensifying and the next earthquake might be developing at present.展开更多
The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sus...The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sustained combustion,which can easily lead to serious electrical fire accidents.To address this issue,this paper establishes a fault arc prototype experimental platform,selects multiple commonly used loads for fault arc experiments,and collects data in both normal and fault states.By analyzing waveform characteristics and selecting fault discrimination feature indicators,corresponding feature values are extracted for qualitative analysis to explore changes in timefrequency characteristics of current before and after faults.Multiple features are then selected to form a multidimensional feature vector space to effectively reduce arc misjudgments and construct a fault discrimination feature database.Based on this,a fault arc hazard prediction model is built using random forests.The model’s multiple hyperparameters are simultaneously optimized through grid search,aiming tominimize node information entropy and complete model training,thereby enhancing model robustness and generalization ability.Through experimental verification,the proposed method accurately predicts and classifies fault arcs of different load types,with an average accuracy at least 1%higher than that of the commonly used fault predictionmethods compared in the paper.展开更多
This article made a systematic statistical analysis on the duration,spatial distribution,form,range,type and reliability of precursory anomalies based on the observations of precursors of 24 moderate-strong earthquake...This article made a systematic statistical analysis on the duration,spatial distribution,form,range,type and reliability of precursory anomalies based on the observations of precursors of 24 moderate-strong earthquakes occurring along the Tancheng-Lujiang fault zone and its bilateral areas in Shandong,Liaoning,Hebei,Jiangsu and Jiangxi Provinces in the period from 1966 to 2005. Results show that:( 1) For M7. 0 and M6. 0earthquakes,med-term abnormities are the greatest in number,short-term abnormities come second,and imminent anomalies are the least. For M5. 0 earthquakes,short-term abnormities are often the most in number,imminent anomalies come second,and the med-term ones are the least.( 2) Precursory anomalies are periodical,part of the med and short-term anomalies are shown as short-term and imminent anomalies during their development.( 3) The development of precursor shows quasi-synchronism; the closer to earthquake occurrence time,the more turning changes of anomalies will appear.( 4)Anomalies mainly occur within an epicenter distance of 100 km, showing a relative concentrated distribution in space,and the shorter the distance to epicenter,the higher the anomaly station / item rate.( 5) The spatial distribution of anomalies is relatively correlated to the strike of structures,having a good consistency with the structure.( 6)There is no significant correlation between duration of abnormities and the epicenter distance.( 7) The higher the magnitude of the earthquake,the greater the amplitude of the abnormities measured with the same observation approach.( 8) In terms of the itemsof the observations,fluid abnormities are the greatest in number,followed by deformation and electromagnetism observations.( 9) For all observation items,med and short-term abnormities make up the majority and short-term and imminent anomalies the minority.( 10) In fluid,deformation and electromagnetism observations,fairly reliable anomalies are about double the number of reliable anomalies.展开更多
基金supported by the National Natural Science Foundation of China(41874011,42074007)the Fundamental Research Funds for the Central Universities(2042023kfyq01)。
文摘The Qinghai Nanshan fault is a larger fault in the Northeastern Xizang Plateau.In previous studies,its movement characteristics are mainly investigated with geological and seismic observations,and the tectonic transformation role of the fault on its east is not yet clear.This study uses data fusion to obtain denser GPS observations near the Qinghai Nanshan fault.Based on tectonic characteristics,we establish a block model to investigate the fault slip rate,locking degree,and slip deficit.The results show that the Qinghai Nanshan fault slip rate is characterized by sinistral and convergent movement.Both the sinistral and convergent rates display a decreasing trend from west to east.The locking degree and slip deficit are higher in the western segment(with an average of about 0.74 and 1.1 mm/a)and lower in the eastern segment.Then,we construct a strain rate field using GPS observations to analyze the regional strain characteristics.The results indicate that along the fault,the western segment shows a larger shear strain rate and negative dilation rate.Regional earthquake records show that the frequency of earthquakes is lower near the fault.The joint results suggest that the western segment may have a higher earthquake risk.In addition,the insignificant fault slip rate in the eastern segment may indicate that it does not participate in the tectonic transformation among the Riyueshan,Lajishan,and West Qinling faults.
基金supported by Shanghai Rising-Star Program(No.22QA1403900)the National Natural Science Foundation of China(No.71804106)the Noncarbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program.
文摘Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method.
文摘The condition characteristics of hydraulic systems reflect running condition for the hydraulic equipment directly. It is the key for condition monitoring and early fault diagnosis to select characteristics reasonably. In this paper, the types, properties of characteristics in hydraulic equipment are analysed, and some considerations in their selection are presented.
基金supported by the National Key Research and Development Plan (2017YFC0601400)SDUST Research Fund (2018TDJH101)the National Natural Science Foundation of China (41402086, 272172)
文摘Coal and oil shale are two common sedimentary energy sources which are often symbiotically developed in M esozoic- Cenozoic continental fault basins. However, the mechanisms and characteristics of the symbiotic development are not yet clearly known. In this research study, the typical continental fault basins of eastern China were chosen as examples for the purpose of conducting an examination of the coal and oil shale symbiotic assemblage types, genetic environmental differences, and transformation mechanisms, as well as the development and occurrence characteristics o f different assemblage types. Through a large number of investigations, systematic experimental testing, and sequence stratigraphy studies, the following conclusions were obtained:(1) There were five types of coal and oil shale symbiotic assemblages observed in the continental fault basins,(2) The development of coal and oil shale deposits requires a warm and humid climate, stable structure, abundant organic matter supply, a certain water depth, and a lower terrestrial source debris supply. The observed differences were that the water depth conditions were diversified in the study area, as well as the sources, types, and content of the organic matter.(3) The rapid transformations of the coal and oil shale genetic environments were mainly controlled by the tectonic settings and climatic conditions, which were determined to control the changes in the water depths, salinity,redox conditions, and lake productivity of the genetic environments. Also, in the symbiotic assemblages, genetic environment changes had induced the development of oil shale deposits, which gradually evolved into coal genetic environments.(4) In the isochronous sequence stratigraphic framework of the coal and oil shale symbiotic assemblages, the lake expansion system tracts (EST) were determined to be the most beneficial to the growth o f all the types of assemblages and were characterized by more assemblage development phases and smaller bed thicknesses. From the early to the late stages of the EST, and from the lakesides to lake centers, the thicknesses of the coal seams in the symbiotic assemblages showed trends of thinning, while the thicknesses of the oil shale deposits exhibited increasing trends. The early stages of high stand system tracts were found to be beneficial to the development of the symbiotic assemblages of coal seams overlying the oil shale. This tract type generally presented large bed thicknesses and distribution ranges. The low stand system tract and the late high stand system tract were determined to be unconducive to the development of the symbiotic assemblages.
基金provided by the National Natural Science Foundation of China(No.51674189,51304154,51327007)the Youth Science and technique new star of Shaanxi Province(No.2016KJXX-37)the Scientific research plan of Shaanxi Education Department(No.16JK1487),are gratefully acknowledged
文摘In order to effectively monitor the concealed fault activation process in excavation activities, based on the actual condition of a working face containing faults with high outburst danger in Xin Zhuangzi mine in Huainan, China, we carried out all-side tracking and monitoring on the fault activation process and development trend in excavation activities by establishing a microseismic monitoring system. The results show that excavation activities have a rather great influence on the fault activation. With the working face approaching the fault, the fault activation builds up and the outburst danger increases; when the excavation activities finishes, the fault activation tends to be stable. The number of microseismic events are corresponding to the intensity of fault activation, and the distribution rules of microseismic events can effectively determine the fault occurrence in the mine. Microseismic monitoring technique is accurate in terms of detecting geologic tectonic activities, such as fault activations lying ahead during excavation activities. By utilizing this technique, we can determine outburst danger in excavation activities in time and accordingly take effective countermeasures to prevent and reduce the occurrence of outburst accidents.
基金Project(51275030)supported by the National Natural Science Foundation of ChinaProject(2016JBM051)supported by the Fundamental Research Funds for the Central Universities,China
文摘The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR.
基金Supported by the China National Science and Technology Major Project(2016ZX05024-002,2016ZX05024-003)
文摘Based on the 3 D seismic structure interpretation of Bohai Sea, combined with physical modeling of structure, structural style analysis and apatite fission track simulation, the structural characteristics and genetic mechanism of the Cenozoic strike-slip faults in Bohai Sea were investigated. The results show that Tanlu strike-slip fault experienced three stages of strike-slip activities in the Cenozoic,and the transition from left-lateral strike to right-lateral strike-slip was completed at the end of the fourth member of the Shahejie Formation. The strike-slip faults in the Bohai Sea have the characteristics of multi-stage and multi-strength stress superposition. According to the superimposed forms of different strengths, different properties and different ratios, they can be divided into three major genetic types,extension and strike-slip superimposition, extension and extrusion superimposition, extrusion and strike-slip superimposition, and fifteen typical structure patterns. Affected by multiple changes in the direction and rate of subduction of the Cenozoic Pacific plate, the difference between the Cenozoic extension and the strike-slip in the Bohai Sea area leads to the diversity of the fault system and the zoning of the depression structure. According to superimposition features of faults, the Bohai Sea area can be divided into the Liaoxi S-type weak strike-slip zone, Liaodong braided strong strike-slip zone, Boxi conjugated medium strike-slip zone, Bodong brush structure medium strike-slip zone and Bonan parallel strong strike-slip zone. These zones differ in oil and gas accumulation features.
基金Supported by the Key Research and Development Program of Heilongjiang Province(No.JD22A022)the Natural Science Foundation of Heilongjiang Province of China(Nos.LH2022D013,LH2023D005)the Support Project for Young Talents in Local Universities in Heilongjiang Province(No.14011202101).
文摘The basin marginal fault system is the key to understand the formation and evolution of Songliao Basin.In order to investigate the influence of marginal fault system on the structural evolution of Songliao Basin,a comprehensive study was conducted on Shiling Town and Zhuanshanhu area of Yehe Town in Siping City of Jilin Province,where is the southeastern margin of the Songliao Basin and there are a series of well-exposed fault,fold and intrusive bodies belonging to the main marginal fault system of the Songliao Basin known as the Jiamusi-Yitong(Jia-Yi)fault zone.Through profile measurement and field investigation,samples with various lithologies and distinctive features were collected.Detailed field and laboratory works include component and microstructure analysis of these samples,rock-rock contact analysis,main strike measurement and statistics analysis.These data reveal the structural characteristics of the fold,fault and intrusive bodies in the study area.The research results show that the folds are distributed in the Mesozoic strata near the main fault of the eastern branch of the Jia-Yi fault zone,and the folded strata involve the Cretaceous Denglouku and Quantou formations.In addition,the section is dominated by high-angle strikeslip thrust faults.Light-colored veins and dark-colored veins are extensively distributed in the exposed granites.Statistical analysis of joint and fault attitudes in the study area reveals a right-lateral strike-sliping along the main fault.The large-scale right-lateral strike-slip and thrust fault system in Shiling Town occurred in right-lateral transpressive stage in Late Cretaceous.Based on the results above,tectonic evolution sequence in Shiling section of the Jia-Yi fault zone during the Mesozoic can be divided into five stages:Middle Jurassic left-lateral ductile strike-slip stage,Late Jurassic compression stage,Early Cretaceous tension stage,Early Cretaceous extension stage and Late Cretaceous right-lateral transpressive stage.These may have important constraint on understanding the Mesozoic evolution of the Songliao Basin.
基金This research was financially supported by China Geological Survey Project(DD20189114,DD20190129)the Basic Scientific Research Project of the Chinese Academy of Geological Sciences(JKY1722,YWF201903-01 and JYYWF20180501).
文摘Based on comparative analysis on hydrochemical characteristics of geothermal water in the north part of Liaokao fault,this research focuses on studying the indicative significance of hydrochemical characteristics for the formation of geothermal water.The result shows that:(1)There is no obvious hydraulic connection between the karst geothermal water(occurred in the east part of the Liaokao fault)and the sandstone geothermal water(occurred in the west part of Liaokao fault).(2)In a close hydrological environment,caused by tectonic activities,geothermal water remains longer time in reservoir,hence the water-rock interaction is more complete,with high degree of concentrations,whereas the renewable capacity of the water is weaker.(3)There is no high temperature mantle source fluid mixed in the geothermal water.Karst geothermal water occurred deep circulatory convection along Liaokao fault and its secondary fault,therefore there is deep crust source fluid added into the geothermal water,closer to the Liaokao fault,the greater affected by the deep crust fluid.However,sandstone geothermal water has weak deep circulatory convection.
基金This work was supported by the Key Laboratory of Safety and High-Efficiency Coal Mining,Ministry of Education,Anhui University of Science and Technology(JYBSYS2020209)the Natural Science Research Project of Anhui Provincial Department of Education(KJHS2020B13)the Huangshan University School Level Talent Launch Project(No.2020XKJQ001).
文摘A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is used accordingly to measure the seepage characteristics of such samples under different loading and unloading confining pressures in order to determine the variation law of the permeability coefficient.The test results show that:(1)The permeability coefficient of the S-RM samples decreases as the pressure increases,and the decrease rate of this coefficient in the initial stage of confining pressure loading is obviously higher than in the semi-late period;(2)The permeability coefficient at different confining pressure levels presents a common trend as the rock block proportion is increased,i.e.,it decreases first then it increases(the permeability coefficient of the sample with rock block proportion 40%being the smallest,70%the largest);(3)In the stage of confining pressure unloading,the recovery degree of the permeability coefficient grows with the increase of rock block proportion(the recovery rate of S-RM sample with rock block proportion 70%reaches 50.2%);(4)In the stage of confining pressure loading and unloading,the sensitivity of the permeability coefficient to the rock block proportion displays the inverse“Z”variation rule(when rock block proportion reaches 60%,the sensitivity is highest);(5)In the stage of confining pressure loading,the relationship between the permeability coefficient and confining pressure can be described by an exponential relationship.
基金supported by National Key Research and Development Program of China(2016YFB0900100)
文摘Half-wavelength AC transmission(HWACT) is an ultra-long distance AC transmission technology, whose electrical distance is close to half-wavelength at the system power frequency. It is very important for the construction and operation of HWACT to analyze its fault features and corresponding protection technology. In this paper, the steady-state voltage and current characteristics of the bus bar and fault point and the steady-state overvoltage distribution along the line will be analyzed when a three-phase symmetrical short-circuit fault occurs on an HWACT line. On this basis, the threephase fault characteristics for longer transmission lines are also studied.
基金This project is supported by Provincial Science Foundation of Education Office of Hebei(No.Z2004455)Youth Research Fundation of State Power of China(No.SPQKJ02-10).
文摘Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.
基金supported by Basic Research Project of Institute of Earthquake Science,China Earthquake Administration (2011ES010102)
文摘Deformation characteristics of the Sichuan-Yunnan region during the two periods 1999--2007 and 2007--2009 are analyzed with a block deformation model and GPS velocity profiles. The results show that the direction of the principal compressive strain rate of the Northwest-Sichuan block - the Mid-Yunnan block - the Southwest-Yunnan block was characterized by a clockwise rotation from north to south. The Anninghe and the Zemuhe faults had some shear-strain accumulation. The southern segment of the Xiaojiang fault had mainly strike-slip movement, while the northern segment was mainly accumulating strain. The 2008 Ms8.0 Wenchuan earthquake had some influence on the mid-southern segment of the Lijiang-Xiaojinhe fault, the Anninghe fault and the Jinshajiang fault, but not the Zemuhe fault, the Xiaojiang fault and the Red River fault as much.
基金supported by the Land&Resources Ministry of China,the China Geological Survey and the research institute of prospecting technology in the Chinese Academy of Geological Sciences,sincere thanks heresupported by National Natural Science Foundation of China(Grant Nos.41272331,51204027)the State Key Laboratory of Geohazard Prevention&Geoenvironment Protection(Grant Nos.SKLGP2012Z007,SKLGP2014Z001,SKLGP2015Z010)
文摘How to find more effective way to stabilize the borehole wall in the fault gouge section is the key technical challenge to control the stability of the borehole wall in the Wenchuan fault gouge section during the process of core drilling. Here we try to describe the characters of deep fault gouge in fracture zones from the undisturbed fault gouge samples which are obtained during the core drilling. The X- Ray Diffraction (XRD), X-Ray Fluorescence (XRF) and Scanning Electron Microscope (SEM) provided the detailed information of the fault gouge's microscopic characteristics on the density, moisture content, expansibility, dispersity, permeability, tensile strength and other main physical-mechanical properties. Based on these systematic experimental studies above and analysis of the fault gouge instability mechanism, a new technical procedure to stabilize the borehole wall is proposed -- a low water and a low loss low permeability drilling fluid system that consists of 4% day + 0.5% CMC-HV + 2% S-1 + 3%sulfonated asphalt + 1% SMC + 0.5% X-1 + 0-5% T type lubricant + barite for core drilling in fault gouge sections.
基金National Natural Science Foundation of China (50278090).
文摘There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure, However few researches have put emphasis on the characteristics of near-fault ground motions containing velocity pulses, especially the characteristics relevant with the design response spectrum prescribed by the code. Through collection of a large number of near-fault records containing velocity pulses, the response spectra and the characteristic periods of records containing no pulses are compared with those of records containing pulses. Response spectra of near-fault records are compared with standard spectra given by code; furthermore, the response spectra and the characteristic periods of each earthquake are compared with that given by code. The result shows that at long periods (longer than 1.5 s), the response spectrum of pulse-containing records is bigger than the response spectrum of no-pulse-containing records; when the characteristic period of near-fault records is calculated, the method that does not fix frequency is more reasonable because the T1 and T2 have a lagging tendency; regardless of the site Ⅰ and site Ⅱ, the characteristic period of pulse-containing records is over twice bigger than the characteristic period given by the code,
基金This work was supported by the National Key Research and Development Program of China(2017YFC0601706 and 2017YFC0601705)Investigation and application of airborne geophysical remote sensing in Bohai Coastal Zone(DD20160150).
文摘The south coastal of Taizhou lies on the magmatic rock belt along the southeast coast of China,which has a complex regional geological structures,intense tectonic movement,and frequent magmatic activities.On the basis of the latest aeromagnetic data,combined with regional geology,gravity,and magnetic susceptibility information,integrated interpretation of the regional aeromagnetic anomalies and their refl ected faults was completed.According to the block features in diff erent zones of the reduction to the pole aeromagnetic data,the magnetic field characteristics and relationship with the structure division were described in detail.The different characteristics of the magnetic field are the concentrated reflection of tectonic movements,magmatic activities,and stratigraphic distributions;the fault structure,especially deep and large fault structures,was inferred and studied.The fault structures were mainly distributed in the NE,NNE,and NW directions,with approximately equal spacing between them.The magnetic anomaly is mainly characterized by the boundary,gradient zones,and beaded anomalies in a different magnetic field.The faults are not only important tectonic boundaries in this region but also tectonic belts that control the distribution of mineralization.Under the interaction of these faults,they form the basic structural pattern of the east-west zone and the north-south block.The NE faults have the largest scale and obviously control the diff erent magnetic fi elds and magmatic activities.The results can provide a reference for further study of the distribution and activity characteristics of magmatic rocks in the coastal zone.
文摘1 Introduction The Dongshengmiao deposit is a super-large Zn-Pb polymetallic sulfide deposit which occurring in the Langshan-Zhaertaaishan metallogenic belt,and located in the western margin of the North China Platform.The ore-bodies of Dongshengmiao deposits are mainly hosted in the second Formation of Langshan Group.There are some studies on the geological characteristics(Peng et al.,2004),geological and
基金This project was supported jointly by Satellite Application(94)No.1,Project D1 of Commission of Science,Technology and Industry for National Defense and Project No 49572142 of National Science Foundation,China
文摘The fault zone along the northern margin of West Qinling Range is a major active fault zone in the key seismic monitoring area in the southeastern part of Gansu Province. In order to study the current activity characteristics of this fault, GPS monitoring network has been arranged along both sides of the fault and 3 measurements have been made from 1996 to 1998. The result indicates that obvious differential movement exists along the north and south sides of the fault and the eastward movement on the south side is 3.8 mm/a larger than that on the north side. In the GPS network, the shortened side is generally in the trend of EW and the extended side is basically NW to SE. The principal compressional stress trend in this area is about EW and the sinistral motion is obvious in the eastern part of the fault (near Wushan). The measured results also indicate that the displacement rate has decreased by 50% and the compressional strain has increased by 100% as compared the data of 1997 -1998 with those of 1996-1997, which shows that the compressional stress field in this region is intensifying and the next earthquake might be developing at present.
基金This work was funded by Beijing Key Laboratory of Distribution Transformer Energy-Saving Technology(China Electric Power Research Institute).
文摘The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sustained combustion,which can easily lead to serious electrical fire accidents.To address this issue,this paper establishes a fault arc prototype experimental platform,selects multiple commonly used loads for fault arc experiments,and collects data in both normal and fault states.By analyzing waveform characteristics and selecting fault discrimination feature indicators,corresponding feature values are extracted for qualitative analysis to explore changes in timefrequency characteristics of current before and after faults.Multiple features are then selected to form a multidimensional feature vector space to effectively reduce arc misjudgments and construct a fault discrimination feature database.Based on this,a fault arc hazard prediction model is built using random forests.The model’s multiple hyperparameters are simultaneously optimized through grid search,aiming tominimize node information entropy and complete model training,thereby enhancing model robustness and generalization ability.Through experimental verification,the proposed method accurately predicts and classifies fault arcs of different load types,with an average accuracy at least 1%higher than that of the commonly used fault predictionmethods compared in the paper.
基金supported financially by Science for Earthquake Resilience(XH14064Y)the open foundation of the State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2014-5-2-E)the major national science and technology support project(2012BAK19B04-05-02)
文摘This article made a systematic statistical analysis on the duration,spatial distribution,form,range,type and reliability of precursory anomalies based on the observations of precursors of 24 moderate-strong earthquakes occurring along the Tancheng-Lujiang fault zone and its bilateral areas in Shandong,Liaoning,Hebei,Jiangsu and Jiangxi Provinces in the period from 1966 to 2005. Results show that:( 1) For M7. 0 and M6. 0earthquakes,med-term abnormities are the greatest in number,short-term abnormities come second,and imminent anomalies are the least. For M5. 0 earthquakes,short-term abnormities are often the most in number,imminent anomalies come second,and the med-term ones are the least.( 2) Precursory anomalies are periodical,part of the med and short-term anomalies are shown as short-term and imminent anomalies during their development.( 3) The development of precursor shows quasi-synchronism; the closer to earthquake occurrence time,the more turning changes of anomalies will appear.( 4)Anomalies mainly occur within an epicenter distance of 100 km, showing a relative concentrated distribution in space,and the shorter the distance to epicenter,the higher the anomaly station / item rate.( 5) The spatial distribution of anomalies is relatively correlated to the strike of structures,having a good consistency with the structure.( 6)There is no significant correlation between duration of abnormities and the epicenter distance.( 7) The higher the magnitude of the earthquake,the greater the amplitude of the abnormities measured with the same observation approach.( 8) In terms of the itemsof the observations,fluid abnormities are the greatest in number,followed by deformation and electromagnetism observations.( 9) For all observation items,med and short-term abnormities make up the majority and short-term and imminent anomalies the minority.( 10) In fluid,deformation and electromagnetism observations,fairly reliable anomalies are about double the number of reliable anomalies.