Online fault detection is one of the key technologies to improve the performance of cloud systems. The current data of cloud systems is to be monitored, collected and used to reflect their state. Its use can potential...Online fault detection is one of the key technologies to improve the performance of cloud systems. The current data of cloud systems is to be monitored, collected and used to reflect their state. Its use can potentially help cloud managers take some timely measures before fault occurrence in clouds. Because of the complex structure and dynamic change characteristics of the clouds, existing fault detection methods suffer from the problems of low efficiency and low accuracy. In order to solve them, this work proposes an online detection model based on asystematic parameter-search method called SVM-Grid, whose construction is based on a support vector machine(SVM). SVM-Grid is used to optimize parameters in SVM. Proper attributes of a cloud system's running data are selected by using Pearson correlation and principal component analysis for the model. Strategies of predicting cloud faults and updating fault sample databases are proposed to optimize the model and improve its performance.In comparison with some representative existing methods, the proposed model can achieve more efficient and accurate fault detection for cloud systems.展开更多
In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition ...In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition is difficult and the amount of data is too small, with large data training methods to solve a certain degree of difficulty. Therefore, a fault detection method based on depth learning is proposed. An auto-encoder with sparse denoising is used to construct a parallel structure network. It can automatically learn and extract the fault data characteristics and realize fault detection through deep learning. The experiment shows that this method can detect the cloud computing abnormality and determine the fault more effectively and accurately than the traditional method in the case of the small amount of cloud fault feature data.展开更多
基金supported by the National Natural Science Foundation of China(61472005,61201252)CERNET Innovation Project(NGII20160207)
文摘Online fault detection is one of the key technologies to improve the performance of cloud systems. The current data of cloud systems is to be monitored, collected and used to reflect their state. Its use can potentially help cloud managers take some timely measures before fault occurrence in clouds. Because of the complex structure and dynamic change characteristics of the clouds, existing fault detection methods suffer from the problems of low efficiency and low accuracy. In order to solve them, this work proposes an online detection model based on asystematic parameter-search method called SVM-Grid, whose construction is based on a support vector machine(SVM). SVM-Grid is used to optimize parameters in SVM. Proper attributes of a cloud system's running data are selected by using Pearson correlation and principal component analysis for the model. Strategies of predicting cloud faults and updating fault sample databases are proposed to optimize the model and improve its performance.In comparison with some representative existing methods, the proposed model can achieve more efficient and accurate fault detection for cloud systems.
文摘In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition is difficult and the amount of data is too small, with large data training methods to solve a certain degree of difficulty. Therefore, a fault detection method based on depth learning is proposed. An auto-encoder with sparse denoising is used to construct a parallel structure network. It can automatically learn and extract the fault data characteristics and realize fault detection through deep learning. The experiment shows that this method can detect the cloud computing abnormality and determine the fault more effectively and accurately than the traditional method in the case of the small amount of cloud fault feature data.