The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone.This 2D seismic array is composed of 161 stations forming su...The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone.This 2D seismic array is composed of 161 stations forming sub-rectangular geometry along the Anninghe fault,which covers 50 km and 150 km in the fault normal and strike directions,respectively,with~5 km intervals.The data were collected between June 2020 and June 2021,with some level of temporal gaps.Two types of instruments,i.e.QS-05A and SmartSolo,are used in this array.Data quality and examples of seismograms are provided in this paper.After the data protection period ends(expected in June 2024),researchers can request a dataset from the National Earthquake Science Data Center.展开更多
Convolutional neural networks(CNNs)are well suited to bearing fault classification due to their ability to learn discriminative spectro-temporal patterns.However,gathering sufficient cases of faulty conditions in real...Convolutional neural networks(CNNs)are well suited to bearing fault classification due to their ability to learn discriminative spectro-temporal patterns.However,gathering sufficient cases of faulty conditions in real-world engineering scenarios to train an intelligent diagnosis system is challenging.This paper proposes a fault diagnosis method combining several augmentation schemes to alleviate the problem of limited fault data.We begin by identifying relevant parameters that influence the construction of a spectrogram.We leverage the uncertainty principle in processing time-frequency domain signals,making it impossible to simultaneously achieve good time and frequency resolutions.A key determinant of this phenomenon is the window function's choice and length used in implementing the shorttime Fourier transform.The Gaussian,Kaiser,and rectangular windows are selected in the experimentation due to their diverse characteristics.The overlap parameter's size also influences the outcome and resolution of the spectrogram.A 50%overlap is used in the original data transformation,and±25%is used in implementing an effective augmentation policy to which two-stage regular CNN can be applied to achieve improved performance.The best model reaches an accuracy of 99.98%and a cross-domain accuracy of 92.54%.When combined with data augmentation,the proposed model yields cutting-edge results.展开更多
Intelligent fault diagnosis is an important method in rotating machinery fault diagnosis and equipment health management.To deal with co-frequency vibration faults,a type of typical fault in rotating machinery,this pa...Intelligent fault diagnosis is an important method in rotating machinery fault diagnosis and equipment health management.To deal with co-frequency vibration faults,a type of typical fault in rotating machinery,this paper proposes a fault diagnosis method based on the stacked autoencoder(SAE)and ensembled ResNet-SVM.Furthermore,the time-and frequency-domain features of several co-frequency vibration faults are summarized based on the mechanism analysis and calculated using actual vibration data.To realize and validate the high-precision diagnosis method of rotating equipment with co-frequency faults proposed in this study,the following three criteria are required:First,to improve the effectiveness and robustness of the ensembled model and the sliding window using data augmentation,adding noise,autoencoder(AE)and SAE methods are analyzed in terms of principle and practical effects.Second,ResNet is used as the feature extractor for the ensembled ResNet-SVM model.Feature extraction is carried out twice,and the extracted co-frequency fault features are more comprehensive.Finally,the data augmentation method and ensemble ResNet-SVM are combined for fault diagnosis and compared with other methods.The experimental results show that the accuracy of the proposed method can exceed 99.9%.展开更多
The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite da...The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite data can be used to detect gravity changes associated with large earthquakes.However,previous GRACE satellite-based seismic gravity-change studies have focused more on coseismic gravity changes than on preseismic gravity changes.Moreover,the noise of the north–south stripe in GRACE data is difficult to eliminate,thereby resulting in the loss of some gravity information related to tectonic activities.To explore the preseismic gravity anomalies in a more refined way,we first propose a method of characterizing gravity variation based on the maximum shear strain of gravity,inspired by the concept of crustal strain.The offset index method is then adopted to describe the gravity anomalies,and the spatial and temporal characteristics of gravity anomalies before earthquakes are analyzed at the scales of the fault zone and plate,respectively.In this work,experiments are carried out on the Tibetan Plateau and its surrounding areas,and the following findings are obtained:First,from the observation scale of the fault zone,we detect the occurrence of large-area gravity anomalies near the epicenter,oftentimes about half a year before an earthquake,and these anomalies were distributed along the fault zone.Second,from the observation scale of the plate,we find that when an earthquake occurred on the Tibetan Plateau,a large number of gravity anomalies also occurred at the boundary of the Tibetan Plateau and the Indian Plate.Moreover,the aforementioned experiments confirm that the proposed method can successfully capture the preseismic gravity anomalies of large earthquakes with a magnitude of less than 8,which suggests a new idea for the application of gravity satellite data to earthquake research.展开更多
Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between...Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between different modal data in most existing multisensor data fusion methods for bearing fault diagnosis,a bearing fault diagnosis method based on a Multiple-Constraint Modal-Invariant Graph Convolutional Fusion Network(MCMI-GCFN)is proposed in this paper.Firstly,a Convolutional Autoencoder(CAE)and Squeeze-and-Excitation Block(SE block)are used to extract features of raw current and vibration signals.Secondly,the model introduces source domain classifiers and domain discriminators to capture modal invariance between different modal data based on domain adversarial training,making use of the redundancy and complementarity between multimodal data.Then,the spatial aggregation property of Graph Convolutional Neural Networks(GCN)is utilized to capture the dependency relationship between current and vibration modes with similar time step features for accurately fusing contextual semantic information.Finally,the validation is conducted on the public bearing damage current and vibration dataset from Paderborn University.The experimental results showed that the delivered fusion method achieved a bearing fault diagnosis accuracy of 99.6%,which was about 9%–11.4%better than that with nonfusion methods.展开更多
In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machin...In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.展开更多
The Pearl River Estuary(PRE) is located at the onshore-offshore transition zone between South China and South China Sea Basin, and it is of great significant value in discussing tectonic relationships between South Ch...The Pearl River Estuary(PRE) is located at the onshore-offshore transition zone between South China and South China Sea Basin, and it is of great significant value in discussing tectonic relationships between South China block and South China Sea block and seismic activities along the offshore active faults in PRE. However, the researches on geometric characteristics of offshore faults in this area are extremely lacking. To investigate the offshore fault distribution and their geometric features in the PRE in greater detail, we acquired thirteen seismic reflection profiles in 2015. Combining the analysis of the seismic reflection and free-air gravity anomaly data, this paper revealed the location, continuity, and geometry of the littoral fault zone and other offshore faults in PRE. The littoral fault zone is composed of the major Dangan Islands fault and several parallel, high-angle, normal faults, which mainly trend northeast to northeast-to-east and dip to the southeast with large displacements. The fault zone is divided into three different segments by the northwest-trending faults. Moreover, the basement depth around Dangan Islands is very shallow, while it suddenly increases along the islands westward and southward. These has resulted in the islands and neighboring areas becoming the places where the stress accumulates easily. The seismogenic pattern of this area is closely related to the comprehensive effect of intersecting faults together with the low velocity layer.展开更多
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d...For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.展开更多
The vibration signals of machinery with various faults often show clear nonlinear characteristics.Currently,fractal dimension analysis as the common useful method for nonlinear signal analysis,is a kind of single frac...The vibration signals of machinery with various faults often show clear nonlinear characteristics.Currently,fractal dimension analysis as the common useful method for nonlinear signal analysis,is a kind of single fractal form,which only reflects the overall irregularity of signals,but cannot describe its local scaling properties.For comprehensive revealing of internal properties,a combinatorial method based on band-phase-randomized(BPR) surrogate data and multifractal is introduced.BPR surrogate data method is effective to eliminate nonlinearity in specified frequency band for a fault signal,which can be utilized to detect nonlinear degree in whole fault signal by nonlinear titration method,and the overall nonlinear distribution of fault signal is displayed in nonlinear characteristic curve that can be used to analyze the fault signal qualitatively.Then multifractal theory as a quantitative analysis method is used to describe geometrical characteristics and local scaling properties,and asymmetry coefficient of multifractal spectrum and multifractal entropy for fault signals are extracted as new criterions to diagnose machinery faults.Several typical faults include rotor misalignment,transversal crack,and static-dynamic rubbing fault are analyzed,and the results indicate that those faults can be distinguished by the proposed method effectively,which provides a qualitative and quantitative analysis way in the field of machinery fault diagnosis.展开更多
Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,th...Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,the state observers of the system are designed to detect faults when they occur in the system.When the system is normal,the observers system is modeled as an uncertain switched system.Based on the model,stability condition of the whole system is given.When conditions are satisfied,the system is asymptotically stable.When a fault occurs,the observers residual can change rapidly to detect the fault.A numerical example shows the effectiveness of the proposed method.展开更多
Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors ...Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors are very sensitive to light or background conditions,which will introduce a variety of global and local fault signals that bring great safety risks to autonomous driving system during long-term running.In this paper,a real-time data fusion network with fault diagnosis and fault tolerance mechanism is designed.By introducing prior features to realize the lightweight network,the features of the input data can be extracted in real time.A new sensor reliability evaluation method is proposed by calculating the global and local confidence of sensors.Through the temporal and spatial correlation between sensor data,the sensor redundancy is utilized to diagnose the local and global confidence level of sensor data in real time,eliminate the fault data,and ensure the accuracy and reliability of data fusion.Experiments show that the network achieves state-of-the-art results in speed and accuracy,and can accurately detect the location of the target when some sensors are out of focus or out of order.The fusion framework proposed in this paper is proved to be effective for intelligent vehicles in terms of real-time performance and reliability.展开更多
In modern industrial processes, timely detection and diagnosis of process abnormalities are critical for monitoring process operations. Various fault detection and diagnosis(FDD) methods have been proposed and impleme...In modern industrial processes, timely detection and diagnosis of process abnormalities are critical for monitoring process operations. Various fault detection and diagnosis(FDD) methods have been proposed and implemented, the performance of which, however, could be drastically influenced by the common presence of incomplete or missing data in real industrial scenarios. This paper presents a new FDD approach based on an incomplete data imputation technique for process fault recognition. It employs the modified stacked autoencoder,a deep learning structure, in the phase of incomplete data treatment, and classifies data representations rather than the imputed complete data in the phase of fault identification. A benchmark process, the Tennessee Eastman process, is employed to illustrate the effectiveness and applicability of the proposed method.展开更多
By systemic processing, comprehensive analysis, and interpretation of gravity data, we confirmed the existence of the west segment of the coastal fault zone(west of Yangjiang to Beibu Bay) in the coastal region of Sou...By systemic processing, comprehensive analysis, and interpretation of gravity data, we confirmed the existence of the west segment of the coastal fault zone(west of Yangjiang to Beibu Bay) in the coastal region of South China. This showed an apparent high gravity gradient in the NEE direction, and worse linearity and less compactness than that in the Pearl River month. This also revealed a relatively large curvature and a complicated gravity structure. In the finding images processed by the gravity data system, each fault was well reflected and primarily characterized by isolines or thick black stripes with a cutting depth greater than 30 km. Though mutually cut by NW-trending and NE-trending faults, the apparent NEE stripe-shaped structure of the west segment of the coastal fault zone remained unchanged,with good continuity and an activity strength higher than that of NW and NE-trending faults. Moreover,we determined that the west segment of the coastal fault zone is the major seismogenic structure responsible for strong earthquakes in the coastal region in the border area of Guangdong, Guangxi, and Hainan.展开更多
The Hori's inverse method based on spectral decomposition was applied to estimate coseismic slip distribution on the rupture plane of the 14 November 2001 Ms8.1 Kunlun earthquake based on GPS survey results. The inve...The Hori's inverse method based on spectral decomposition was applied to estimate coseismic slip distribution on the rupture plane of the 14 November 2001 Ms8.1 Kunlun earthquake based on GPS survey results. The inversion result shows that the six sliding models can be constrained by the coseismic GPS data. The established slips mainly concentrated along the eastern segment of the fault rupture, and the maximum magnitude is about 7 m. Slip on the eastern segment of the fault rupture represents as purely left-lateral strike-slip. Slip on the western segment of the seismic rupture represents as mainly dip-stip with the maximum dip-slip about 1 m. Total predicted scalar seismic moment is 5.196× 10^2° N.m. Our results constrained by geodetic data are consistent with seismological results.展开更多
As the demand for wind energy continues to grow at exponential rate, reducing operation and maintenance (O & M) costs and improving reliability have become top priorities in wind turbine maintenance strategies. Pr...As the demand for wind energy continues to grow at exponential rate, reducing operation and maintenance (O & M) costs and improving reliability have become top priorities in wind turbine maintenance strategies. Prediction of wind turbine failures before they reach a catastrophic stage is critical to reduce the O & M cost due to unnecessary scheduled maintenance. A SCADA-data based condition monitoring system, which takes advantage of data already collected at the wind turbine controller, is a cost-effective way to monitor wind turbines for early warning of failures. This article proposes a methodology of fault prediction and automatically generating warning and alarm for wind turbine main bearings based on stored SCADA data using Artificial Neural Network (ANN). The ANN model of turbine main bearing normal behavior is established and then the deviation between estimated and actual values of the parameter is calculated. Furthermore, a method has been developed to generate early warning and alarm and avoid false warnings and alarms based on the deviation. In this way, wind farm operators are able to have enough time to plan maintenance, and thus, unanticipated downtime can be avoided and O & M costs can be reduced.展开更多
Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine...Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields.展开更多
In a smart grid, a huge amount of data is collected for various applications, such as load monitoring and demand response. These data are used for analyzing the power state and formulating the optimal dispatching stra...In a smart grid, a huge amount of data is collected for various applications, such as load monitoring and demand response. These data are used for analyzing the power state and formulating the optimal dispatching strategy. However, these big energy data in terms of volume, velocity and variety raise concern over consumers' privacy. For instance, in order to optimize energy utilization and support demand response, numerous smart meters are installed at a consumer's home to collect energy consumption data at a fine granularity, but these fine-grained data may contain information on the appliances and thus the consumer's behaviors at home. In this paper, we propose a privacy-preserving data aggregation scheme based on secret sharing with fault tolerance in a smart grid, which ensures that the control center obtains the integrated data without compromising privacy. Meanwhile, we also consider fault tolerance and resistance to differential attack during the data aggregation. Finally, we perform a security analysis and performance evaluation of our scheme in comparison with the other similar schemes. The analysis shows that our scheme can meet the security requirement, and it also shows better performance than other popular methods.展开更多
We analyze co-seismic displacement field of the 26 December 2004, giant Sumatra–Andaman earthquake derived from Global Position System observations,geological vertical measurement of coral head, and pivot line observ...We analyze co-seismic displacement field of the 26 December 2004, giant Sumatra–Andaman earthquake derived from Global Position System observations,geological vertical measurement of coral head, and pivot line observed through remote sensing. Using the co-seismic displacement field and AK135 spherical layered Earth model, we invert co-seismic slip distribution along the seismic fault. We also search the best fault geometry model to fit the observed data. Assuming that the dip angle linearly increases in downward direction, the postfit residual variation of the inversed geometry model with dip angles linearly changing along fault strike are plotted. The geometry model with local minimum misfits is the one with dip angle linearly increasing along strike from 4.3oin top southernmost patch to 4.5oin top northernmost path and dip angle linearly increased. By using the fault shape and geodetic co-seismic data, we estimate the slip distribution on the curved fault. Our result shows that the earthquake ruptured *200-km width down to a depth of about 60 km.0.5–12.5 m of thrust slip is resolved with the largest slip centered around the central section of the rupture zone78N–108N in latitude. The estimated seismic moment is8.2 9 1022 N m, which is larger than estimation from the centroid moment magnitude(4.0 9 1022 N m), and smaller than estimation from normal-mode oscillation data modeling(1.0 9 1023 N m).展开更多
Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the re...Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the results of fault prognosis,the maintenance strategy for underlying industrial systems can realize the conversion from passive maintenance to active maintenance.With the increased complexity and the improved automation level of industrial systems,fault prognosis techniques have become more and more indispensable.Particularly,the datadriven based prognosis approaches,which tend to find the hidden fault factors and determine the specific fault occurrence time of the system by analysing historical or real-time measurement data,gain great attention from different industrial sectors.In this context,the major task of this paper is to present a systematic overview of data-driven fault prognosis for industrial systems.Firstly,the characteristics of different prognosis methods are revealed with the data-based ones being highlighted.Moreover,based on the different data characteristics that exist in industrial systems,the corresponding fault prognosis methodologies are illustrated,with emphasis on analyses and comparisons of different prognosis methods.Finally,we reveal the current research trends and look forward to the future challenges in this field.This review is expected to serve as a tutorial and source of references for fault prognosis researchers.展开更多
基金supported by the National Key Research and Development Program of China(No.2018YFC1503401).
文摘The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone.This 2D seismic array is composed of 161 stations forming sub-rectangular geometry along the Anninghe fault,which covers 50 km and 150 km in the fault normal and strike directions,respectively,with~5 km intervals.The data were collected between June 2020 and June 2021,with some level of temporal gaps.Two types of instruments,i.e.QS-05A and SmartSolo,are used in this array.Data quality and examples of seismograms are provided in this paper.After the data protection period ends(expected in June 2024),researchers can request a dataset from the National Earthquake Science Data Center.
基金supported by the National Natural Science Foundation of China(42027805)the National Aeronautical Fund(ASFC-20172080005)。
文摘Convolutional neural networks(CNNs)are well suited to bearing fault classification due to their ability to learn discriminative spectro-temporal patterns.However,gathering sufficient cases of faulty conditions in real-world engineering scenarios to train an intelligent diagnosis system is challenging.This paper proposes a fault diagnosis method combining several augmentation schemes to alleviate the problem of limited fault data.We begin by identifying relevant parameters that influence the construction of a spectrogram.We leverage the uncertainty principle in processing time-frequency domain signals,making it impossible to simultaneously achieve good time and frequency resolutions.A key determinant of this phenomenon is the window function's choice and length used in implementing the shorttime Fourier transform.The Gaussian,Kaiser,and rectangular windows are selected in the experimentation due to their diverse characteristics.The overlap parameter's size also influences the outcome and resolution of the spectrogram.A 50%overlap is used in the original data transformation,and±25%is used in implementing an effective augmentation policy to which two-stage regular CNN can be applied to achieve improved performance.The best model reaches an accuracy of 99.98%and a cross-domain accuracy of 92.54%.When combined with data augmentation,the proposed model yields cutting-edge results.
基金Supported by National Natural Science Foundation of China (Grant No.51875031)Beijing Municipal Natural Science Foundation (Grant No.3212010)。
文摘Intelligent fault diagnosis is an important method in rotating machinery fault diagnosis and equipment health management.To deal with co-frequency vibration faults,a type of typical fault in rotating machinery,this paper proposes a fault diagnosis method based on the stacked autoencoder(SAE)and ensembled ResNet-SVM.Furthermore,the time-and frequency-domain features of several co-frequency vibration faults are summarized based on the mechanism analysis and calculated using actual vibration data.To realize and validate the high-precision diagnosis method of rotating equipment with co-frequency faults proposed in this study,the following three criteria are required:First,to improve the effectiveness and robustness of the ensembled model and the sliding window using data augmentation,adding noise,autoencoder(AE)and SAE methods are analyzed in terms of principle and practical effects.Second,ResNet is used as the feature extractor for the ensembled ResNet-SVM model.Feature extraction is carried out twice,and the extracted co-frequency fault features are more comprehensive.Finally,the data augmentation method and ensemble ResNet-SVM are combined for fault diagnosis and compared with other methods.The experimental results show that the accuracy of the proposed method can exceed 99.9%.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509202)the National Natural Science Foundation of China(Grant Nos.41772350,61371189,and 41701513).
文摘The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite data can be used to detect gravity changes associated with large earthquakes.However,previous GRACE satellite-based seismic gravity-change studies have focused more on coseismic gravity changes than on preseismic gravity changes.Moreover,the noise of the north–south stripe in GRACE data is difficult to eliminate,thereby resulting in the loss of some gravity information related to tectonic activities.To explore the preseismic gravity anomalies in a more refined way,we first propose a method of characterizing gravity variation based on the maximum shear strain of gravity,inspired by the concept of crustal strain.The offset index method is then adopted to describe the gravity anomalies,and the spatial and temporal characteristics of gravity anomalies before earthquakes are analyzed at the scales of the fault zone and plate,respectively.In this work,experiments are carried out on the Tibetan Plateau and its surrounding areas,and the following findings are obtained:First,from the observation scale of the fault zone,we detect the occurrence of large-area gravity anomalies near the epicenter,oftentimes about half a year before an earthquake,and these anomalies were distributed along the fault zone.Second,from the observation scale of the plate,we find that when an earthquake occurred on the Tibetan Plateau,a large number of gravity anomalies also occurred at the boundary of the Tibetan Plateau and the Indian Plate.Moreover,the aforementioned experiments confirm that the proposed method can successfully capture the preseismic gravity anomalies of large earthquakes with a magnitude of less than 8,which suggests a new idea for the application of gravity satellite data to earthquake research.
基金supported by the National Key R&D Program of China(2021YFF0501101)the Youth Project of Hunan Provincial Department of Education(22B0586)the Education Reform Project of Hunan Provincial Department of Education(2022JGYB186).
文摘Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between different modal data in most existing multisensor data fusion methods for bearing fault diagnosis,a bearing fault diagnosis method based on a Multiple-Constraint Modal-Invariant Graph Convolutional Fusion Network(MCMI-GCFN)is proposed in this paper.Firstly,a Convolutional Autoencoder(CAE)and Squeeze-and-Excitation Block(SE block)are used to extract features of raw current and vibration signals.Secondly,the model introduces source domain classifiers and domain discriminators to capture modal invariance between different modal data based on domain adversarial training,making use of the redundancy and complementarity between multimodal data.Then,the spatial aggregation property of Graph Convolutional Neural Networks(GCN)is utilized to capture the dependency relationship between current and vibration modes with similar time step features for accurately fusing contextual semantic information.Finally,the validation is conducted on the public bearing damage current and vibration dataset from Paderborn University.The experimental results showed that the delivered fusion method achieved a bearing fault diagnosis accuracy of 99.6%,which was about 9%–11.4%better than that with nonfusion methods.
文摘In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.
基金supported by the National Natural Science Foundation of China(Nos.41506046,41376060,41706054)the Opening Foundation of Key Laboratory of Ocean and Marginal Sea Geology,CAS(No.MSGL15-05)+1 种基金WPOS(No.XDA11030102-02)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA13010101)
文摘The Pearl River Estuary(PRE) is located at the onshore-offshore transition zone between South China and South China Sea Basin, and it is of great significant value in discussing tectonic relationships between South China block and South China Sea block and seismic activities along the offshore active faults in PRE. However, the researches on geometric characteristics of offshore faults in this area are extremely lacking. To investigate the offshore fault distribution and their geometric features in the PRE in greater detail, we acquired thirteen seismic reflection profiles in 2015. Combining the analysis of the seismic reflection and free-air gravity anomaly data, this paper revealed the location, continuity, and geometry of the littoral fault zone and other offshore faults in PRE. The littoral fault zone is composed of the major Dangan Islands fault and several parallel, high-angle, normal faults, which mainly trend northeast to northeast-to-east and dip to the southeast with large displacements. The fault zone is divided into three different segments by the northwest-trending faults. Moreover, the basement depth around Dangan Islands is very shallow, while it suddenly increases along the islands westward and southward. These has resulted in the islands and neighboring areas becoming the places where the stress accumulates easily. The seismogenic pattern of this area is closely related to the comprehensive effect of intersecting faults together with the low velocity layer.
基金supported by the National Natural Science Foundation of China(61202473)the Fundamental Research Funds for Central Universities(JUSRP111A49)+1 种基金"111 Project"(B12018)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.
基金supported by National Natural Science Foundation of China (Grant No. 61077071,Grant No. 51075349)Hebei Provincial Natural Science Foundation of China (Grant No. F2011203207)
文摘The vibration signals of machinery with various faults often show clear nonlinear characteristics.Currently,fractal dimension analysis as the common useful method for nonlinear signal analysis,is a kind of single fractal form,which only reflects the overall irregularity of signals,but cannot describe its local scaling properties.For comprehensive revealing of internal properties,a combinatorial method based on band-phase-randomized(BPR) surrogate data and multifractal is introduced.BPR surrogate data method is effective to eliminate nonlinearity in specified frequency band for a fault signal,which can be utilized to detect nonlinear degree in whole fault signal by nonlinear titration method,and the overall nonlinear distribution of fault signal is displayed in nonlinear characteristic curve that can be used to analyze the fault signal qualitatively.Then multifractal theory as a quantitative analysis method is used to describe geometrical characteristics and local scaling properties,and asymmetry coefficient of multifractal spectrum and multifractal entropy for fault signals are extracted as new criterions to diagnose machinery faults.Several typical faults include rotor misalignment,transversal crack,and static-dynamic rubbing fault are analyzed,and the results indicate that those faults can be distinguished by the proposed method effectively,which provides a qualitative and quantitative analysis way in the field of machinery fault diagnosis.
基金supported by the Natural Science Foundation of Jiangsu Province (BK2006202)
文摘Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,the state observers of the system are designed to detect faults when they occur in the system.When the system is normal,the observers system is modeled as an uncertain switched system.Based on the model,stability condition of the whole system is given.When conditions are satisfied,the system is asymptotically stable.When a fault occurs,the observers residual can change rapidly to detect the fault.A numerical example shows the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(Grant U1964201,Grant 61790562 and Grant 61803120)by the Fundamental Research Fundsfor the Central Universities.
文摘Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors are very sensitive to light or background conditions,which will introduce a variety of global and local fault signals that bring great safety risks to autonomous driving system during long-term running.In this paper,a real-time data fusion network with fault diagnosis and fault tolerance mechanism is designed.By introducing prior features to realize the lightweight network,the features of the input data can be extracted in real time.A new sensor reliability evaluation method is proposed by calculating the global and local confidence of sensors.Through the temporal and spatial correlation between sensor data,the sensor redundancy is utilized to diagnose the local and global confidence level of sensor data in real time,eliminate the fault data,and ensure the accuracy and reliability of data fusion.Experiments show that the network achieves state-of-the-art results in speed and accuracy,and can accurately detect the location of the target when some sensors are out of focus or out of order.The fusion framework proposed in this paper is proved to be effective for intelligent vehicles in terms of real-time performance and reliability.
基金supported by the National Natural Science Foundation of China(61433001)Tsinghua University Initiative Scientific Research Program。
文摘In modern industrial processes, timely detection and diagnosis of process abnormalities are critical for monitoring process operations. Various fault detection and diagnosis(FDD) methods have been proposed and implemented, the performance of which, however, could be drastically influenced by the common presence of incomplete or missing data in real industrial scenarios. This paper presents a new FDD approach based on an incomplete data imputation technique for process fault recognition. It employs the modified stacked autoencoder,a deep learning structure, in the phase of incomplete data treatment, and classifies data representations rather than the imputed complete data in the phase of fault identification. A benchmark process, the Tennessee Eastman process, is employed to illustrate the effectiveness and applicability of the proposed method.
基金financially supported by Guangdong Provincial Science and Technology Plan Projects(20178030314082)General Project of National Natural Science Foundation of China (41676057)National Science and Technology Support Program (2015BAK18B01)
文摘By systemic processing, comprehensive analysis, and interpretation of gravity data, we confirmed the existence of the west segment of the coastal fault zone(west of Yangjiang to Beibu Bay) in the coastal region of South China. This showed an apparent high gravity gradient in the NEE direction, and worse linearity and less compactness than that in the Pearl River month. This also revealed a relatively large curvature and a complicated gravity structure. In the finding images processed by the gravity data system, each fault was well reflected and primarily characterized by isolines or thick black stripes with a cutting depth greater than 30 km. Though mutually cut by NW-trending and NE-trending faults, the apparent NEE stripe-shaped structure of the west segment of the coastal fault zone remained unchanged,with good continuity and an activity strength higher than that of NW and NE-trending faults. Moreover,we determined that the west segment of the coastal fault zone is the major seismogenic structure responsible for strong earthquakes in the coastal region in the border area of Guangdong, Guangxi, and Hainan.
基金Supported by National Basic Research Program of China (973 Program) (2009CB320600), National Natural Science Foundation of China (60828007, 60534010, 60821063), the Leverhulme Trust (F/00. 120/BC) in the United Kingdom, and the 111 Project (B08015)
基金supported by Chinese Joint Seismological Science Foundation(A07005)basic research foundation from Institute of Earthquake Science,and State Key Basic Research De-velopment and Programming Project of China(2004CB418403)
文摘The Hori's inverse method based on spectral decomposition was applied to estimate coseismic slip distribution on the rupture plane of the 14 November 2001 Ms8.1 Kunlun earthquake based on GPS survey results. The inversion result shows that the six sliding models can be constrained by the coseismic GPS data. The established slips mainly concentrated along the eastern segment of the fault rupture, and the maximum magnitude is about 7 m. Slip on the eastern segment of the fault rupture represents as purely left-lateral strike-slip. Slip on the western segment of the seismic rupture represents as mainly dip-stip with the maximum dip-slip about 1 m. Total predicted scalar seismic moment is 5.196× 10^2° N.m. Our results constrained by geodetic data are consistent with seismological results.
文摘As the demand for wind energy continues to grow at exponential rate, reducing operation and maintenance (O & M) costs and improving reliability have become top priorities in wind turbine maintenance strategies. Prediction of wind turbine failures before they reach a catastrophic stage is critical to reduce the O & M cost due to unnecessary scheduled maintenance. A SCADA-data based condition monitoring system, which takes advantage of data already collected at the wind turbine controller, is a cost-effective way to monitor wind turbines for early warning of failures. This article proposes a methodology of fault prediction and automatically generating warning and alarm for wind turbine main bearings based on stored SCADA data using Artificial Neural Network (ANN). The ANN model of turbine main bearing normal behavior is established and then the deviation between estimated and actual values of the parameter is calculated. Furthermore, a method has been developed to generate early warning and alarm and avoid false warnings and alarms based on the deviation. In this way, wind farm operators are able to have enough time to plan maintenance, and thus, unanticipated downtime can be avoided and O & M costs can be reduced.
文摘Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields.
文摘In a smart grid, a huge amount of data is collected for various applications, such as load monitoring and demand response. These data are used for analyzing the power state and formulating the optimal dispatching strategy. However, these big energy data in terms of volume, velocity and variety raise concern over consumers' privacy. For instance, in order to optimize energy utilization and support demand response, numerous smart meters are installed at a consumer's home to collect energy consumption data at a fine granularity, but these fine-grained data may contain information on the appliances and thus the consumer's behaviors at home. In this paper, we propose a privacy-preserving data aggregation scheme based on secret sharing with fault tolerance in a smart grid, which ensures that the control center obtains the integrated data without compromising privacy. Meanwhile, we also consider fault tolerance and resistance to differential attack during the data aggregation. Finally, we perform a security analysis and performance evaluation of our scheme in comparison with the other similar schemes. The analysis shows that our scheme can meet the security requirement, and it also shows better performance than other popular methods.
基金supported by the Special Fund of Fundamental Scientific Research Business Expense for Higher School of Central Government(Projects for creation teams ZY20110101)NSFC 41090294talent selection and training plan project of Hebei university
文摘We analyze co-seismic displacement field of the 26 December 2004, giant Sumatra–Andaman earthquake derived from Global Position System observations,geological vertical measurement of coral head, and pivot line observed through remote sensing. Using the co-seismic displacement field and AK135 spherical layered Earth model, we invert co-seismic slip distribution along the seismic fault. We also search the best fault geometry model to fit the observed data. Assuming that the dip angle linearly increases in downward direction, the postfit residual variation of the inversed geometry model with dip angles linearly changing along fault strike are plotted. The geometry model with local minimum misfits is the one with dip angle linearly increasing along strike from 4.3oin top southernmost patch to 4.5oin top northernmost path and dip angle linearly increased. By using the fault shape and geodetic co-seismic data, we estimate the slip distribution on the curved fault. Our result shows that the earthquake ruptured *200-km width down to a depth of about 60 km.0.5–12.5 m of thrust slip is resolved with the largest slip centered around the central section of the rupture zone78N–108N in latitude. The estimated seismic moment is8.2 9 1022 N m, which is larger than estimation from the centroid moment magnitude(4.0 9 1022 N m), and smaller than estimation from normal-mode oscillation data modeling(1.0 9 1023 N m).
基金supported by the National Natural Science Foundation of China(61773087)the National Key Research and Development Program of China(2018YFB1601500)High-tech Ship Research Project of Ministry of Industry and Information Technology-Research of Intelligent Ship Testing and Verifacation([2018]473)
文摘Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the results of fault prognosis,the maintenance strategy for underlying industrial systems can realize the conversion from passive maintenance to active maintenance.With the increased complexity and the improved automation level of industrial systems,fault prognosis techniques have become more and more indispensable.Particularly,the datadriven based prognosis approaches,which tend to find the hidden fault factors and determine the specific fault occurrence time of the system by analysing historical or real-time measurement data,gain great attention from different industrial sectors.In this context,the major task of this paper is to present a systematic overview of data-driven fault prognosis for industrial systems.Firstly,the characteristics of different prognosis methods are revealed with the data-based ones being highlighted.Moreover,based on the different data characteristics that exist in industrial systems,the corresponding fault prognosis methodologies are illustrated,with emphasis on analyses and comparisons of different prognosis methods.Finally,we reveal the current research trends and look forward to the future challenges in this field.This review is expected to serve as a tutorial and source of references for fault prognosis researchers.