This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The...This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The precursory information of fault slip during the underground mining activities is studied as well. Based on the physical modeling, the optimization of roadway support design and the field verification in fault-influenced zone are conducted. Physical modeling results show that, due to the combined effect of mining activities and fault slip, the mining-induced pressure and the extent of damaged rock masses in the fault-influenced zone are greater than those in the uninfluenced zone. The sharp increase and the succeeding stabilization of stress or steady increase in displacement can be identified as the precursory information of fault slip. Considering the larger mining-induced pressure in the fault-influenced zone, the new support design utilizing cables is proposed. The optimization of roadway support design suggests that the cables can be anchored in the stable surrounding rocks and can effectively mobilize the load bearing capacity of the stable surrounding rocks. The field observation indicates that the roadway is in good condition with the optimized roadway support design.展开更多
An efficient design-for-testability (DFT) technique is proposed to achieve low overhead for scan-based delay fault testing. Existing techniques for delay test such as skewed-load or broadside make the test generatio...An efficient design-for-testability (DFT) technique is proposed to achieve low overhead for scan-based delay fault testing. Existing techniques for delay test such as skewed-load or broadside make the test generation process complex and produce lower coverage for scan-based designs as compared with non-scan designs, whereas techniques such as enhanced-scan test can make the test easy but need an extra holding latch to add substantial hardware overhead. A new tri-state holding logic is presented to replace the common holding latch in enhanced-scan test to get a substantial low hardware overhead. This scheme can achieve low delay overhead by avoiding the holding latch on the critical timing scan path. What's more, this method can also keep the state and signal activity in the combinational circuit from the scan during data scan-in operation to reduce the power dissipation. Experiment results on a set of ISCAS89 benchmarks show the efficiency of the proposed scheme.展开更多
As there are no specific guidelines on design of subsea pipelines crossing active seismic faults, methods for land buried pipelines have been applied to. Taking the large seismic fault movement into account, this pape...As there are no specific guidelines on design of subsea pipelines crossing active seismic faults, methods for land buried pipelines have been applied to. Taking the large seismic fault movement into account, this paper proposes improved methods for seismic designs of subsea pipelines by comprehensively investigating the real constraining of soil on the pipelines, the interaction processes of soil with the pipeline, the plastic slippage of the soil, and the elastic-plastic properties of the pipeline materials. New formulas are given to calculate the length of transition section and its total elongation. These formulas are more reasonable in mechanism, and more practical for seismic design of subsea pipelines crossing active faults.展开更多
Single-chip multiprocessor (CMP) combined with the fault-loleranl(FT)techniques offers an ideal architecture to achieve high availability on the basis of sustaining highcomputing performance FT design of a single-chip...Single-chip multiprocessor (CMP) combined with the fault-loleranl(FT)techniques offers an ideal architecture to achieve high availability on the basis of sustaining highcomputing performance FT design of a single-chip multiprocessor is described, including thetechniques from hard-wart redundancy to software support and firmware strategy. The design aims atmasking the influences of errors and automatically correcting the system states.展开更多
A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by u...A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by using the event-triggered sampled output. Some H∞constraints between the estimation errors and the event-triggered sampling mechanism are established to ensure the estimation accuracy. Then, based on the constraints and the obtained fault information, an event-triggered detector and a static fault tolerant controller are co-designed to guarantee the stability of the faulty system and to reduce the sensor communication cost.Furthermore, the problem of the event detector and dynamic FTC co-design is also investigated. Simulation results of an unstable batch reactor are finally provided to illustrate the effectiveness of the proposed method.展开更多
It is easy to apply lines in design drawings to create different styles, however, there is no guarantee that all the style lines drawn are able to be manufactured. In this paper, we focus on one undeliverable style to...It is easy to apply lines in design drawings to create different styles, however, there is no guarantee that all the style lines drawn are able to be manufactured. In this paper, we focus on one undeliverable style to enhance our understanding of the relationship between the design sketch and the pattern design process. In order to evidence that such style is unworkable, a systematic display of pattern development, and to be reinforced by mathematical evaluation, will be introduced and addressed. When one can easily detect design fault, waste of product development time can be minimized.展开更多
In this paper, a robust sensor fault diagnosis observer with non-singular structure is proposed for a class of linear sampled-data descriptor system with state time-vary delay. Firstly, a sampled-data descriptor model...In this paper, a robust sensor fault diagnosis observer with non-singular structure is proposed for a class of linear sampled-data descriptor system with state time-vary delay. Firstly, a sampled-data descriptor model with time-vary delay is proposed and transformed into a discrete-time non-singular one. Then, a robust sensor fault diagnosis observer is proposed based on the state estimation error and the measurement residual, this observer can guarantee the robustness of the residual against the augmented disturbance and the sensor fault, which means the H∞ performance index is satisfied. As the confining matrix of the designed observer parameters does not meet the Linear Matrix Inequality (LMI), a cone complementary linearization (CCL) algorithm is proposed to solve this problem. The decision logic of the residual is obtained by the residual evaluation function. Simulation results show the effectiveness of the method.展开更多
It was shown from the study on the recently near-fault earthquake ground motions that the near-fault effects were seldom considered in the existing Chinese seismic code. Referring to the UBC97 design concept for near-...It was shown from the study on the recently near-fault earthquake ground motions that the near-fault effects were seldom considered in the existing Chinese seismic code. Referring to the UBC97 design concept for near-fault factors, based on the collected world-widely free-site records of near-fault earthquakes ground motions classified by earthquake magnitude and site condition, the attenuation relationship expressions of the acceleration spectrum demand at the key points within the long period and moderate period were established in term of the earthquake magnitude and the site condition. Furthermore, the near-fault factors' expressions about the earthquake magnitude and the fault distance were deduced for the area lack of near-fault strong earthquake records. Based on the current Chinese Building Seismic Design Code, the near-fault effect factors and the modified design spectral curves, which were valuable for the seismic design, were proposed to analyze the seismic response of structures.展开更多
This paper addresses a problem of observer-based sensor fault reconstruction for continuous-time systems subject to sensor faults and measurement disturbances via a descriptor system approach. An augmented descriptor ...This paper addresses a problem of observer-based sensor fault reconstruction for continuous-time systems subject to sensor faults and measurement disturbances via a descriptor system approach. An augmented descriptor plant is first formulated, by assembling measurement disturbances and sensor faults into an auxiliary state vector. Then a novel descriptor state observer for the augmented plant is constructed such that simultaneous reconstruction of original system states, sensor faults and measurement disturbances are obtained readily. Sufficient conditions for the existence of the proposed observer are explicitly provided, and the application scope of the observer is further discussed. In addition, an extension of the proposed linear approach to a class of nonlinear systems with Lipschitz constraints is investigated. Finally, two numerical examples are simulated to illustrate the effectiveness of the proposed fault-reconstructing approaches.展开更多
In order to propose a seismic design spectrum that includes the effect of rupture directivity in the near-fault region, this study investigates the application of equivalent pulses to the parameter attenuation relatio...In order to propose a seismic design spectrum that includes the effect of rupture directivity in the near-fault region, this study investigates the application of equivalent pulses to the parameter attenuation relationships developed for near-fault, forward-directivity motions. Near-fault ground motions are represented by equivalent pulses with different waveforms defined by a small number of parameters (peak acceleration, A, and velocity V; and pulse period, Tv). Dimensionless ratios between these parameters (e.g., ATv/V, VTv/D) and response spectral shapes and amplitudes are examined for different pulses to gain insight on their dependence on basic pulse waveforms. Ratios of ATv/V, VTv/D, and the ratio of pulse period to the period for peak spectral velocity (Tv-p) are utilized to quantify the difference between rock and soil sites for near-fault forward-directivity ground motions. The ATv/Vratio of recorded near-fault motions is substantially larger for rock sites than that for soil sites, while Tvp/Tv ratios are smaller at rock sites than at soil sites. Furthermore, using simple pulses and available predictive relationships for the pulse parameters, a preliminary model for the design acceleration response spectra for the near-fault region that includes the dependence on magnitude, rupture distance, and local site conditions are developed.展开更多
In many areas, reliability of the digital circuits has become the key factor to restrict circuit development. Fault-tolerant design is the commonly used method to improve the reliability of digital circuits. The curre...In many areas, reliability of the digital circuits has become the key factor to restrict circuit development. Fault-tolerant design is the commonly used method to improve the reliability of digital circuits. The current fault-tolerant design methods are based on triple modular redundancy( TMR) or multiple modular redundancy( MMR). These redundancy designs rely on the experience of the designers,and the designed circuits have poor adaptabilities to a complex environment. However, evolutionary design of digital circuits does not rely on prior knowledge. During the evolution, some novel and optimal circuit topologies can be found, and the evolved circuits can feature strong adaptive capacities. Based on Cartesian genetic programming( CGP), a novel method for designing fault-tolerant digital circuits by evolution is proposed,key steps of the evolution are introduced,influences of function sets on evolution are investigated,and as a preliminary result,an evolved full adder with high fault-tolerance is shown.展开更多
This paper presents a methodology for constructing seismic design spectra in near-fault regions. By analyzing the characteristics of near-fault pulse-type ground motions, an equivalent pulse model is proposed, which c...This paper presents a methodology for constructing seismic design spectra in near-fault regions. By analyzing the characteristics of near-fault pulse-type ground motions, an equivalent pulse model is proposed, which can well represent the characteristics of the near-fault forward-directivity and fling-step pulse-type ground motions. The normalized horizontal seismic design spectra for near-fault regions are presented using recorded near-fault pulse-type ground motions and equivalent pulse-type ground motions, which are derived based on the equivalent pulse model coupled with ground motion parameter attenuation relations. The normalized vertical seismic design spectra for near-fault regions are obtained by scaling the corresponding horizontal spectra with the vertical-to-horizontal acceleration spectral ratios of near-fault pulse-type ground motions. The proposed seismic design spectra appear to have relatively small dispersion in a statistical sense. The seismic design spectra for both horizontal and vertical directions can provide alternative spectral shapes for seismic design codes.展开更多
The key to software reliability is fault-tolerant design ofapplication software.New fault-tolerant strategies andtheir design methods for application software under vari-ous computer system are introduced.It has such ...The key to software reliability is fault-tolerant design ofapplication software.New fault-tolerant strategies andtheir design methods for application software under vari-ous computer system are introduced.It has such advan-tages as simple hardware platform,independent fromapplication,stable reliability.lastly,some technicalproblems are discussed in details.展开更多
It is important to achieve continuous, stable and efficient pumping well operation in actual oilfield operation. Down-hole pumping well working conditions can be monitored in real-time and a reasonable production sche...It is important to achieve continuous, stable and efficient pumping well operation in actual oilfield operation. Down-hole pumping well working conditions can be monitored in real-time and a reasonable production scheme can be designed when computer diagnosis is used. However, it is difficult to make a comprehensive analysis to supply efficient technical guidance for operation of the pumping well with multiple faults of down-hole conditions, which cannot be effectively dealt with by the common methods. To solve this problem, a method based on designated component analysis (DCA) is used in this paper. Freeman chain code is used to represent the down-hole dynamometer card whose important characteristics are extracted to construct a designated mode set. A control chart is used as a basis for fault detection. The upper and lower control lines on the control chart are determined from standard samples in normal working conditions. In an incompletely orthogonal mode, the designated mode set could be divided into some subsets in which the modes are completely orthogonal. The observed data is projected into each designated mode to realize fault detection according to the upper and lower control lines. The examples show that the proposed method can effectively diagnose multiple faults of down-hole conditions.展开更多
The objective of this paper is to describe the lessons learned and actions that have been taken related to the seismic design of bridge structures after the Chi-Chi,Taiwan earthquake.Much variable near-fault ground mo...The objective of this paper is to describe the lessons learned and actions that have been taken related to the seismic design of bridge structures after the Chi-Chi,Taiwan earthquake.Much variable near-fault ground motion data was collected from the rupture of Chelungpu fault during the Chi-Chi earthquake,allowing the seismic response of bridge structures subjected to these near-fault ground motions to be carefully examined.To study the near-fault ground motion effect on bridge seismic design codes,a two-level seismic design of bridge structures was developed and implemented.This design code reflects the near-fault factors in the seismic design forces.Finally,a risk assessment methodology,based on bridge vulnerability,is also developed to assist in decisions for reducing seismic risk due to failure of bridges.展开更多
The fault diagnosis problem is investigated for a class of nonlinear neutral systems with multiple disturbances.Time-varying faults are considered and multiple disturbances are supposed to include the unknown disturba...The fault diagnosis problem is investigated for a class of nonlinear neutral systems with multiple disturbances.Time-varying faults are considered and multiple disturbances are supposed to include the unknown disturbance modeled by an exo-system and norm bounded uncertain disturbance.A nonlinear disturbance observer is designed to estimate the modeled disturbance.Then,the fault diagnosis observer is constructed by integrating disturbance observer with disturbance attenuation and rejection performances.The augmented Lyapunov functional approach,which involves the tuning parameter and slack variable,is applied to make the solution of inequality more flexible.Finally,applications for a two-link robotic manipulator system are given to show the efficiency of the proposed approach.展开更多
In this paper, we shall summarize a new approach to robust and fault tolerant control proposed recently by the author. This approach is based on a variation of all controller parametrization. This robust and fault-tol...In this paper, we shall summarize a new approach to robust and fault tolerant control proposed recently by the author. This approach is based on a variation of all controller parametrization. This robust and fault-tolerant control design consists of two parts: a nominal performance controller and a robustness controller, and works in such a way that when a component (sensor,actuator, etc.) failure is detected, the controller structure is reconfigured by adding a robustness loop to compensate the fault. We shall illustrate how this strategy works under various situations.展开更多
A fault diagnosis method of working position gear in a tank gearbox is put forward based on simulating the fault of working position gear in an actual tank,extracting the envelope of vibration signal by Hilbert transf...A fault diagnosis method of working position gear in a tank gearbox is put forward based on simulating the fault of working position gear in an actual tank,extracting the envelope of vibration signal by Hilbert transformation amplitude demodulation method,and zooming the low-frequency band to envelope signal.展开更多
基金financially supported by the National Natural Science Foundation of China(No.41502184)Beijing Natural Science Foundation(No.2164067)+2 种基金National Key Research and Development Program(No.2016YFC0801401)Fundamental Research Funds for the Central Universities(No.2014QL01)Innovation Training Programs for Undergraduate Students(Nos.201411413054 and SKLCRSM14CXJH08)
文摘This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The precursory information of fault slip during the underground mining activities is studied as well. Based on the physical modeling, the optimization of roadway support design and the field verification in fault-influenced zone are conducted. Physical modeling results show that, due to the combined effect of mining activities and fault slip, the mining-induced pressure and the extent of damaged rock masses in the fault-influenced zone are greater than those in the uninfluenced zone. The sharp increase and the succeeding stabilization of stress or steady increase in displacement can be identified as the precursory information of fault slip. Considering the larger mining-induced pressure in the fault-influenced zone, the new support design utilizing cables is proposed. The optimization of roadway support design suggests that the cables can be anchored in the stable surrounding rocks and can effectively mobilize the load bearing capacity of the stable surrounding rocks. The field observation indicates that the roadway is in good condition with the optimized roadway support design.
基金This project was supported by the National Natural Science Foundation of China (90407007).
文摘An efficient design-for-testability (DFT) technique is proposed to achieve low overhead for scan-based delay fault testing. Existing techniques for delay test such as skewed-load or broadside make the test generation process complex and produce lower coverage for scan-based designs as compared with non-scan designs, whereas techniques such as enhanced-scan test can make the test easy but need an extra holding latch to add substantial hardware overhead. A new tri-state holding logic is presented to replace the common holding latch in enhanced-scan test to get a substantial low hardware overhead. This scheme can achieve low delay overhead by avoiding the holding latch on the critical timing scan path. What's more, this method can also keep the state and signal activity in the combinational circuit from the scan during data scan-in operation to reduce the power dissipation. Experiment results on a set of ISCAS89 benchmarks show the efficiency of the proposed scheme.
基金supported by the National Natural Science Foundation of China (Grant No. 50979113)the National High Technology Research and Development Program of China (863 Program, Grant No. 2006AA09A105)the China National Offshore Oil Corporation
文摘As there are no specific guidelines on design of subsea pipelines crossing active seismic faults, methods for land buried pipelines have been applied to. Taking the large seismic fault movement into account, this paper proposes improved methods for seismic designs of subsea pipelines by comprehensively investigating the real constraining of soil on the pipelines, the interaction processes of soil with the pipeline, the plastic slippage of the soil, and the elastic-plastic properties of the pipeline materials. New formulas are given to calculate the length of transition section and its total elongation. These formulas are more reasonable in mechanism, and more practical for seismic design of subsea pipelines crossing active faults.
基金Supported by the National High Techology Devel opment 863 Program of China(2002AA1Z030) and China PostdoctoralScience Foundation(2003034151)
文摘Single-chip multiprocessor (CMP) combined with the fault-loleranl(FT)techniques offers an ideal architecture to achieve high availability on the basis of sustaining highcomputing performance FT design of a single-chip multiprocessor is described, including thetechniques from hard-wart redundancy to software support and firmware strategy. The design aims atmasking the influences of errors and automatically correcting the system states.
基金supported by the National Natural Science Foundation of China(6147315961374136+1 种基金61104028)the Research Innovation Program of Nantong University(YKC16004)
文摘A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by using the event-triggered sampled output. Some H∞constraints between the estimation errors and the event-triggered sampling mechanism are established to ensure the estimation accuracy. Then, based on the constraints and the obtained fault information, an event-triggered detector and a static fault tolerant controller are co-designed to guarantee the stability of the faulty system and to reduce the sensor communication cost.Furthermore, the problem of the event detector and dynamic FTC co-design is also investigated. Simulation results of an unstable batch reactor are finally provided to illustrate the effectiveness of the proposed method.
文摘It is easy to apply lines in design drawings to create different styles, however, there is no guarantee that all the style lines drawn are able to be manufactured. In this paper, we focus on one undeliverable style to enhance our understanding of the relationship between the design sketch and the pattern design process. In order to evidence that such style is unworkable, a systematic display of pattern development, and to be reinforced by mathematical evaluation, will be introduced and addressed. When one can easily detect design fault, waste of product development time can be minimized.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61021002)
文摘In this paper, a robust sensor fault diagnosis observer with non-singular structure is proposed for a class of linear sampled-data descriptor system with state time-vary delay. Firstly, a sampled-data descriptor model with time-vary delay is proposed and transformed into a discrete-time non-singular one. Then, a robust sensor fault diagnosis observer is proposed based on the state estimation error and the measurement residual, this observer can guarantee the robustness of the residual against the augmented disturbance and the sensor fault, which means the H∞ performance index is satisfied. As the confining matrix of the designed observer parameters does not meet the Linear Matrix Inequality (LMI), a cone complementary linearization (CCL) algorithm is proposed to solve this problem. The decision logic of the residual is obtained by the residual evaluation function. Simulation results show the effectiveness of the method.
基金National Natural Science Foundation of China (50278002)Dalian Nationalities University Ph D Foundation (20066104)
文摘It was shown from the study on the recently near-fault earthquake ground motions that the near-fault effects were seldom considered in the existing Chinese seismic code. Referring to the UBC97 design concept for near-fault factors, based on the collected world-widely free-site records of near-fault earthquakes ground motions classified by earthquake magnitude and site condition, the attenuation relationship expressions of the acceleration spectrum demand at the key points within the long period and moderate period were established in term of the earthquake magnitude and the site condition. Furthermore, the near-fault factors' expressions about the earthquake magnitude and the fault distance were deduced for the area lack of near-fault strong earthquake records. Based on the current Chinese Building Seismic Design Code, the near-fault effect factors and the modified design spectral curves, which were valuable for the seismic design, were proposed to analyze the seismic response of structures.
基金supported by the National Natural Science Foundation of China(61104026)the Open Funding for National Defense Key Subject Laboratory of Micro and Small Spacecraft Technology(20090450126)
文摘This paper addresses a problem of observer-based sensor fault reconstruction for continuous-time systems subject to sensor faults and measurement disturbances via a descriptor system approach. An augmented descriptor plant is first formulated, by assembling measurement disturbances and sensor faults into an auxiliary state vector. Then a novel descriptor state observer for the augmented plant is constructed such that simultaneous reconstruction of original system states, sensor faults and measurement disturbances are obtained readily. Sufficient conditions for the existence of the proposed observer are explicitly provided, and the application scope of the observer is further discussed. In addition, an extension of the proposed linear approach to a class of nonlinear systems with Lipschitz constraints is investigated. Finally, two numerical examples are simulated to illustrate the effectiveness of the proposed fault-reconstructing approaches.
基金International (Regional) Cooperative Research Program of China National Natural Science Foundation Under Grant No. 50420120133 and Heilongjiang Natural Science Foundation Under Grant No. ZGJ03-03
文摘In order to propose a seismic design spectrum that includes the effect of rupture directivity in the near-fault region, this study investigates the application of equivalent pulses to the parameter attenuation relationships developed for near-fault, forward-directivity motions. Near-fault ground motions are represented by equivalent pulses with different waveforms defined by a small number of parameters (peak acceleration, A, and velocity V; and pulse period, Tv). Dimensionless ratios between these parameters (e.g., ATv/V, VTv/D) and response spectral shapes and amplitudes are examined for different pulses to gain insight on their dependence on basic pulse waveforms. Ratios of ATv/V, VTv/D, and the ratio of pulse period to the period for peak spectral velocity (Tv-p) are utilized to quantify the difference between rock and soil sites for near-fault forward-directivity ground motions. The ATv/Vratio of recorded near-fault motions is substantially larger for rock sites than that for soil sites, while Tvp/Tv ratios are smaller at rock sites than at soil sites. Furthermore, using simple pulses and available predictive relationships for the pulse parameters, a preliminary model for the design acceleration response spectra for the near-fault region that includes the dependence on magnitude, rupture distance, and local site conditions are developed.
基金National Natural Science Foundations of China(Nos.61271153,61372039)
文摘In many areas, reliability of the digital circuits has become the key factor to restrict circuit development. Fault-tolerant design is the commonly used method to improve the reliability of digital circuits. The current fault-tolerant design methods are based on triple modular redundancy( TMR) or multiple modular redundancy( MMR). These redundancy designs rely on the experience of the designers,and the designed circuits have poor adaptabilities to a complex environment. However, evolutionary design of digital circuits does not rely on prior knowledge. During the evolution, some novel and optimal circuit topologies can be found, and the evolved circuits can feature strong adaptive capacities. Based on Cartesian genetic programming( CGP), a novel method for designing fault-tolerant digital circuits by evolution is proposed,key steps of the evolution are introduced,influences of function sets on evolution are investigated,and as a preliminary result,an evolved full adder with high fault-tolerance is shown.
基金Special Scientific Research Fund of Earthquake Profession of China under Grant No.201208013National Natural Science Foundation of China under Grant No.51238012
文摘This paper presents a methodology for constructing seismic design spectra in near-fault regions. By analyzing the characteristics of near-fault pulse-type ground motions, an equivalent pulse model is proposed, which can well represent the characteristics of the near-fault forward-directivity and fling-step pulse-type ground motions. The normalized horizontal seismic design spectra for near-fault regions are presented using recorded near-fault pulse-type ground motions and equivalent pulse-type ground motions, which are derived based on the equivalent pulse model coupled with ground motion parameter attenuation relations. The normalized vertical seismic design spectra for near-fault regions are obtained by scaling the corresponding horizontal spectra with the vertical-to-horizontal acceleration spectral ratios of near-fault pulse-type ground motions. The proposed seismic design spectra appear to have relatively small dispersion in a statistical sense. The seismic design spectra for both horizontal and vertical directions can provide alternative spectral shapes for seismic design codes.
文摘The key to software reliability is fault-tolerant design ofapplication software.New fault-tolerant strategies andtheir design methods for application software under vari-ous computer system are introduced.It has such advan-tages as simple hardware platform,independent fromapplication,stable reliability.lastly,some technicalproblems are discussed in details.
基金supported by the Key Program of National Natural Science Foundation of China (61034005)Postgraduate Scientific Research and Innovation Projects of Basic Scientific Research Operating Expensesof Ministry of Education (N100604001)Excellent Doctoral Dissertations Cultivation Project of Northeastern University
文摘It is important to achieve continuous, stable and efficient pumping well operation in actual oilfield operation. Down-hole pumping well working conditions can be monitored in real-time and a reasonable production scheme can be designed when computer diagnosis is used. However, it is difficult to make a comprehensive analysis to supply efficient technical guidance for operation of the pumping well with multiple faults of down-hole conditions, which cannot be effectively dealt with by the common methods. To solve this problem, a method based on designated component analysis (DCA) is used in this paper. Freeman chain code is used to represent the down-hole dynamometer card whose important characteristics are extracted to construct a designated mode set. A control chart is used as a basis for fault detection. The upper and lower control lines on the control chart are determined from standard samples in normal working conditions. In an incompletely orthogonal mode, the designated mode set could be divided into some subsets in which the modes are completely orthogonal. The observed data is projected into each designated mode to realize fault detection according to the upper and lower control lines. The examples show that the proposed method can effectively diagnose multiple faults of down-hole conditions.
基金the Science Council,Chinese Taipei,under grant no.SC 90-2211-E-002-028.
文摘The objective of this paper is to describe the lessons learned and actions that have been taken related to the seismic design of bridge structures after the Chi-Chi,Taiwan earthquake.Much variable near-fault ground motion data was collected from the rupture of Chelungpu fault during the Chi-Chi earthquake,allowing the seismic response of bridge structures subjected to these near-fault ground motions to be carefully examined.To study the near-fault ground motion effect on bridge seismic design codes,a two-level seismic design of bridge structures was developed and implemented.This design code reflects the near-fault factors in the seismic design forces.Finally,a risk assessment methodology,based on bridge vulnerability,is also developed to assist in decisions for reducing seismic risk due to failure of bridges.
基金supported by the National Natural Science Foundation of China(6077401360925012)+1 种基金the National High Technology Research and Development Program of China(863 Program) (2008AA12A216)the National Basic Research Program of China (973 Program)(2009CB 724002)
文摘The fault diagnosis problem is investigated for a class of nonlinear neutral systems with multiple disturbances.Time-varying faults are considered and multiple disturbances are supposed to include the unknown disturbance modeled by an exo-system and norm bounded uncertain disturbance.A nonlinear disturbance observer is designed to estimate the modeled disturbance.Then,the fault diagnosis observer is constructed by integrating disturbance observer with disturbance attenuation and rejection performances.The augmented Lyapunov functional approach,which involves the tuning parameter and slack variable,is applied to make the solution of inequality more flexible.Finally,applications for a two-link robotic manipulator system are given to show the efficiency of the proposed approach.
基金Supported in part by grants from NASA and the Louisiana Board of Regents
文摘In this paper, we shall summarize a new approach to robust and fault tolerant control proposed recently by the author. This approach is based on a variation of all controller parametrization. This robust and fault-tolerant control design consists of two parts: a nominal performance controller and a robustness controller, and works in such a way that when a component (sensor,actuator, etc.) failure is detected, the controller structure is reconfigured by adding a robustness loop to compensate the fault. We shall illustrate how this strategy works under various situations.
基金Sponsored by National Defense Science and Technology Key Lab Foundation of China(51457120104JB3505)
文摘A fault diagnosis method of working position gear in a tank gearbox is put forward based on simulating the fault of working position gear in an actual tank,extracting the envelope of vibration signal by Hilbert transformation amplitude demodulation method,and zooming the low-frequency band to envelope signal.