In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogene...In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogeneous Poisson process(NHPP),and it is proved that the prediction accuracy of such models could be improved by adding the describing of characterization of testing effort.However,some research work indicates that the fault detection rate(FDR) is another key factor affects final software quality.Most early NHPPbased models deal with the FDR as constant or piecewise function,which does not fit the different testing stages well.Thus,this paper first incorporates a multivariate function of FDR,which is bathtub-shaped,into the NHPP-based SRGMs considering testing effort in order to further improve performance.A new model framework is proposed,and a stepwise method is used to apply the framework with real data sets to find the optimal model.Experimental studies show that the obtained new model can provide better performance of fitting and prediction compared with other traditional SRGMs.展开更多
As one of the most important indexes to evaluate the quality of software, software reliability experiences an increasing development in recent years. We investigate a software reliability growth model(SRGM). The appli...As one of the most important indexes to evaluate the quality of software, software reliability experiences an increasing development in recent years. We investigate a software reliability growth model(SRGM). The application of this model is to predict the occurrence of the software faults based on the non-homogeneous Poisson process(NHPP). Unlike the independent assumptions in other models, we consider fault dependency. The testing faults are divided into three classes in this model: leading faults, first-step dependent faults and second-step dependent faults. The leading faults occurring independently follow an NHPP, while the first-step dependent faults only become detectable after the related leading faults are detected. The second-step dependent faults can only be detected after the related first-step dependent faults are detected. Then, the combined model is built on the basis of the three sub-processes. Finally, an illustration based on real dataset is presented to verify the proposed model.展开更多
基金supported by the National Natural Science Foundation of China(61070220)the Anhui Provincial Natural Science Foundation(1408085MKL79)
文摘In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogeneous Poisson process(NHPP),and it is proved that the prediction accuracy of such models could be improved by adding the describing of characterization of testing effort.However,some research work indicates that the fault detection rate(FDR) is another key factor affects final software quality.Most early NHPPbased models deal with the FDR as constant or piecewise function,which does not fit the different testing stages well.Thus,this paper first incorporates a multivariate function of FDR,which is bathtub-shaped,into the NHPP-based SRGMs considering testing effort in order to further improve performance.A new model framework is proposed,and a stepwise method is used to apply the framework with real data sets to find the optimal model.Experimental studies show that the obtained new model can provide better performance of fitting and prediction compared with other traditional SRGMs.
基金the National Natural Science Foundation of China(No.71671016)the School Fund of Beijing Information Science&Technology University(No.1935004)
文摘As one of the most important indexes to evaluate the quality of software, software reliability experiences an increasing development in recent years. We investigate a software reliability growth model(SRGM). The application of this model is to predict the occurrence of the software faults based on the non-homogeneous Poisson process(NHPP). Unlike the independent assumptions in other models, we consider fault dependency. The testing faults are divided into three classes in this model: leading faults, first-step dependent faults and second-step dependent faults. The leading faults occurring independently follow an NHPP, while the first-step dependent faults only become detectable after the related leading faults are detected. The second-step dependent faults can only be detected after the related first-step dependent faults are detected. Then, the combined model is built on the basis of the three sub-processes. Finally, an illustration based on real dataset is presented to verify the proposed model.