期刊文献+
共找到679篇文章
< 1 2 34 >
每页显示 20 50 100
Construction of fault diagnosis system for control rod drive mechanism based on knowledge graph and Bayesian inference 被引量:2
1
作者 Xue‑Jun Jiang Wen Zhou Jie Hou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期58-75,共18页
Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research objec... Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research object,and a fault diagnosis system was proposed based on knowledge graph.The subject–relation–object triples are defined based on CRDM unstructured data,including design specification,operation and maintenance manual,alarm list,and other forms of expert experience.In this study,we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events.A three-layer robustly optimized bidirectional encoder representation from transformers(RBT3)pre-training approach combined with a text convolutional neural network(TextCNN)was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query.The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously.Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction.Additionally,a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically.Furthermore,the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system.Finally,a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed,making the CRDM fault diagnosis process intuitive and effective. 展开更多
关键词 CRDM Knowledge graph fault diagnosis Bayesian inference RBT3-TextCNN Web interface
下载PDF
Development of Fault Diagnosis System for Spacecraft Based on Fault Tree and G2 被引量:4
2
作者 纪常伟 荣吉利 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期444-448,共5页
Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level,... Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level, subsystem level, component level and element level. Secondly, a hierarchical diagnosis model is expressed with four layers, i.e., sensors layer, function layer, behavior layer and structure layer. These layers are used to work together to accomplish the fault alarm, diagnosis and localization. Thirdly, a fault-tree-oriented hybrid knowledge representation based on frame and generalized rule and its relevant reasoning strategy is put forward. Finally, a diagnosis case for spacecraft power system is exemplified combining the above with a powerful expert system development tool G2. 展开更多
关键词 spacecraft fault diagnosis fault tree hierarchical diagnosis model G2
下载PDF
On-Line Broken-Bar Fault Diagnosis System of Induction Motor 被引量:2
3
作者 张荣 王秀和 《Transactions of Tianjin University》 EI CAS 2008年第2期144-147,共4页
Induction motor faults including mechanical and electrical faults are reviewed.The fault diagnosis methods are summarized.To analyze the influence of stator current,torque,speed and rotor current on faulted bars,a tim... Induction motor faults including mechanical and electrical faults are reviewed.The fault diagnosis methods are summarized.To analyze the influence of stator current,torque,speed and rotor current on faulted bars,a time-stepping transient finite element(FE)model of induction motor with bars faulted is created in this paper.With wavelet package analysis method and FFT method, the simulation result of finite element is analyzed.Based on the simulation analysis,the on-line fault diagnosis system of induction motor with bars faulted is developed.With the speed of broken bars motor changed from 1 478 r/min to 1 445 r/min,the FFT power spectra and the wavelet package decoupling factors are given.The comparison result shows that the on-line diagnosis system can detect broken-bar fault efficiently. 展开更多
关键词 induction motor fault diagnosis finite element method broken-bar
下载PDF
Design on Vibration Monitoring and Fault Diagnosis System of Large Water Pump Motor 被引量:2
4
作者 WEI Xieben LU Xujin +1 位作者 LI Tongbin CHEN Shuqin 《International Journal of Plant Engineering and Management》 2021年第2期118-128,共11页
Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fa... Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fault analysis and protection.The essay mainly studies and designs large water pump motor′s real time vibration monitoring and fault diagnosis system.The essay completes the systems project design,the establishment of the system and performance test.Eddy-currentsensor,XM-120 vibration module,XM-320 axial translation module,XM-362 temperature module,XM-360 process amount module and XM-500 gateway module are used to measure the axial vibration and displacement of main motors.Laboratory tests prove that the system can meet the requirements of motor vibration monitoring. 展开更多
关键词 large water pump motor vibration monitoring real-time monitoring fault diagnosis TEST
下载PDF
Fault Diagnosis System for Aquaculture Networking Based on Neural Network
5
作者 Liu Yanzhong Pan Caixia +2 位作者 Chen Yingyi Sun Chuanren Wang Lin 《Animal Husbandry and Feed Science》 CAS 2016年第1期39-43,共5页
In view of existing problems at current aquaculture networking, such as nonlinear characteristic of fault and faults are easily affected by many factors, a fault diagnosis model based on neural network was proposed. I... In view of existing problems at current aquaculture networking, such as nonlinear characteristic of fault and faults are easily affected by many factors, a fault diagnosis model based on neural network was proposed. In the building process of the model, the common fault types in the field of aquaculture networking were first analyzed and the types of fault mode were summarized. Afterwards, the evaluation indices of fault diagnosis were made, and eventually the fault diagnosis system of aquaculture networking was constructed using neural network principle. The fault diagnosis system could not only reduce the communication burden, but also have high diagnostic rate. Thus, it could be well applied in the fault dia^osis system for aquaculture networking. 展开更多
关键词 Neural network Aquaculture networking fault diagnosis
下载PDF
Design of a Fault Diagnosis System for the Power Device Based on Ferrography and Image Recognition Technology
6
作者 LIYue LUEKe-hong TAOLi-min 《International Journal of Plant Engineering and Management》 2005年第1期42-46,共5页
In this paper, the characters of the ferrography and image recognitiontechnology are analyzed. The fault diagnosis system for the power device based on the ferrographyand image recognition technology is designed. At t... In this paper, the characters of the ferrography and image recognitiontechnology are analyzed. The fault diagnosis system for the power device based on the ferrographyand image recognition technology is designed. At the same time, the structure, the design andimplementing method, and the functions of each module of this system are described in detail. 展开更多
关键词 FERROGRAPHY image recognition neural network fault diagnosis expertsystem
下载PDF
Research on Rubbing-fault Diagnosis System in High-speed Rotor based on LabVIEW
7
作者 WEI Xie-ben CHEN Shu-qin SUN Pei-ming 《International Journal of Plant Engineering and Management》 2018年第1期59-64,共6页
The rubbing between rotors and determiners is the common mechanic vibration fault in the operation of rotation machinery. During the operation of equipment, in order to meet the demand of high speed and efficiency of ... The rubbing between rotors and determiners is the common mechanic vibration fault in the operation of rotation machinery. During the operation of equipment, in order to meet the demand of high speed and efficiency of machinery, the gap between the active and passive parts of the rotor system become smaller, which results in the common rubbing fault of rotors and stators. This essay studies the fault diagnosis of high speed rotors based on invented instrument and shows the measurement and research of the signals of rubbing failure of high speed rotors. The research introduces the designed software and hardware which are experimented and testified on Bentley rotor experiment platform. The system has theoretical and applicative meaning in practical projects. 展开更多
关键词 high-speed rotor LABVIEW RUBBING fault diagnosis
下载PDF
An Embedded Condition Monitoring and Fault Diagnosis System for Rotary Machines
8
作者 LIU Hai-rong XU Fei-yun 《International Journal of Plant Engineering and Management》 2006年第4期193-204,共12页
An intelligent machine is the earnest aspiration of people. From the point of view to construct an intelligent machine with self-monitoring and self-diagnosis abilities, the technology for realizing an internet orient... An intelligent machine is the earnest aspiration of people. From the point of view to construct an intelligent machine with self-monitoring and self-diagnosis abilities, the technology for realizing an internet oriented embedded intelligent condition monitoring and fault diagnosis system for the rotating machine with remote monitoring, diagnosis, maintenance and upgrading functions is introduced systematically. Based on the DSP ( Digital Signal Processor) and embedded microcomputer, the system can measure and store the machine work status in real time, such as the rotating speed and vibration, etc. In the system, the DSP chip is used to do the fault signal processing and feature extraction, and the embedded microcomputer with a customized Linux operation system is used to realize the internet oriented remote software upgrading and system maintenance. Embedded fault diagnosis software based on mobile agent technology is also designed in the system, which can interconnect with the remote fault diagnosis center to realize the collaborative diagnosis. The embedded condition monitoring and fault diagnosis technology proposed in this paper will effectively improve the intelligence degree of the fault diagnosis system. 展开更多
关键词 embedded system mobile agent condition monitoring fault diagnosis
下载PDF
Design on Online Fault Diagnosis System of Stealmaking Gas Dedust Fan
9
作者 WEI Xieben 《International Journal of Plant Engineering and Management》 2022年第2期117-128,共12页
The study introduces the meanings of the technology on dedust fan′s online detection and fault diagnosis,the ways of fault diagnosis,the common fault analysis and the design of stealmaking gas dedust fan′s online fa... The study introduces the meanings of the technology on dedust fan′s online detection and fault diagnosis,the ways of fault diagnosis,the common fault analysis and the design of stealmaking gas dedust fan′s online fault diagnosis.It shows the whole system′s design,establishment and functional test.XM series modules have been used to realize the online fault diagnosis.The system′s functional requirements are proved by experiment. 展开更多
关键词 dedust fan online detection fault diagnosis entek XM
下载PDF
An Intelligent Process Fault Diagnosis System based on Andrews Plot and Convolutional Neural Network
10
作者 Shengkai Wang Jie Zhang 《Journal of Dynamics, Monitoring and Diagnostics》 2022年第3期127-138,共12页
This paper proposes an intelligent process fault diagnosis system through integrating the techniques of Andrews plot and convolutional neural network.The proposed fault diagnosis method extracts features from the on-l... This paper proposes an intelligent process fault diagnosis system through integrating the techniques of Andrews plot and convolutional neural network.The proposed fault diagnosis method extracts features from the on-line process measurements using Andrews function.To address the uncertainty of setting the proper dimension of extracted features in Andrews function,a convolutional neural network is used to further extract diagnostic information from the Andrews function outputs.The outputs of the convolutional neural network are then fed to a single hidden layer neural network to obtain the final fault diagnosis result.The proposed fault diagnosis system is compared with a conventional neural network based fault diagnosis system and integrating Andrews function with neural network and manual selection of features in Andrews function outputs.Applications to a simulated CSTR process show that the proposed fault diagnosis system gives much better performance than the conventional neural network based fault diagnosis system and manual selection of features in Andrews function outputs.It reveals that the use of Andrews function and convolutional neural network can improve the diagnosis performance. 展开更多
关键词 Andrews plot convolutional neural network fault diagnosis neural network
下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system
11
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 fault diagnosis Deep learning Multi-scale convolution Open-circuit Convolutional neural network
下载PDF
Fault diagnosis method of link control system for gravitational wave detection
12
作者 GAO Ai XU Shengnan +2 位作者 ZHAO Zichen SHANG Haibin XU Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期922-931,共10页
To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Differen... To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm. 展开更多
关键词 large scale multi-satellite formation gravitational wave detection laser link monitoring fault diagnosis deep learning
下载PDF
Label Recovery and Trajectory Designable Network for Transfer Fault Diagnosis of Machines With Incorrect Annotation 被引量:1
13
作者 Bin Yang Yaguo Lei +2 位作者 Xiang Li Naipeng Li Asoke K.Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期932-945,共14页
The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio... The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation. 展开更多
关键词 Deep transfer learning domain adaptation incorrect label annotation intelligent fault diagnosis rotating machines
下载PDF
Expert Experience and Data-Driven Based Hybrid Fault Diagnosis for High-SpeedWire Rod Finishing Mills 被引量:1
14
作者 Cunsong Wang Ningze Tang +3 位作者 Quanling Zhang Lixin Gao Haichen Yin Hao Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1827-1847,共21页
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo... The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system. 展开更多
关键词 High-speed wire rod finishing mills expert experience DATA-DRIVEN fault diagnosis
下载PDF
Causal temporal graph attention network for fault diagnosis of chemical processes
15
作者 Jiaojiao Luo Zhehao Jin +3 位作者 Heping Jin Qian Li Xu Ji Yiyang Dai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期20-32,共13页
Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches... Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches with excellent performance are widely used for FDD in chemical processes.However,improved predictive accuracy has often been achieved through increased model complexity,which turns models into black-box methods and causes uncertainty regarding their decisions.In this study,a causal temporal graph attention network(CTGAN)is proposed for fault diagnosis of chemical processes.A chemical causal graph is built by causal inference to represent the propagation path of faults.The attention mechanism and chemical causal graph were combined to help us notice the key variables relating to fault fluctuations.Experiments in the Tennessee Eastman(TE)process and the green ammonia(GA)process showed that CTGAN achieved high performance and good explainability. 展开更多
关键词 Chemical processes Safety fault diagnosis Causal discovery Attention mechanism Explainability
下载PDF
Hierarchical multihead self-attention for time-series-based fault diagnosis
16
作者 Chengtian Wang Hongbo Shi +1 位作者 Bing Song Yang Tao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期104-117,共14页
Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fa... Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fault diagnosis methods have been developed in recent years.However,the existing methods have the problem of long-term dependency and are difficult to train due to the sequential way of training.To overcome these problems,a novel fault diagnosis method based on time-series and the hierarchical multihead self-attention(HMSAN)is proposed for chemical process.First,a sliding window strategy is adopted to construct the normalized time-series dataset.Second,the HMSAN is developed to extract the time-relevant features from the time-series process data.It improves the basic self-attention model in both width and depth.With the multihead structure,the HMSAN can pay attention to different aspects of the complicated chemical process and obtain the global dynamic features.However,the multiple heads in parallel lead to redundant information,which cannot improve the diagnosis performance.With the hierarchical structure,the redundant information is reduced and the deep local time-related features are further extracted.Besides,a novel many-to-one training strategy is introduced for HMSAN to simplify the training procedure and capture the long-term dependency.Finally,the effectiveness of the proposed method is demonstrated by two chemical cases.The experimental results show that the proposed method achieves a great performance on time-series industrial data and outperforms the state-of-the-art approaches. 展开更多
关键词 Self-attention mechanism Deep learning Chemical process Time-series fault diagnosis
下载PDF
The Lightweight Edge-Side Fault Diagnosis Approach Based on Spiking Neural Network
17
作者 Jingting Mei Yang Yang +2 位作者 Zhipeng Gao Lanlan Rui Yijing Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期4883-4904,共22页
Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics ... Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics of edge networks,such as limited resources,complex network faults,and the need for high real-time performance,enhancing and optimizing existing network fault diagnosis methods is necessary.Therefore,this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network(LSNN).Firstly,we use the Izhikevich neurons model to replace the Leaky Integrate and Fire(LIF)neurons model in the LSNN model.Izhikevich neurons inherit the simplicity of LIF neurons but also possess richer behavioral characteristics and flexibility to handle diverse data inputs.Inspired by Fast Spiking Interneurons(FSIs)with a high-frequency firing pattern,we use the parameters of FSIs.Secondly,inspired by the connection mode based on spiking dynamics in the basal ganglia(BG)area of the brain,we propose the pruning approach based on the FSIs of the BG in LSNN to improve computational efficiency and reduce the demand for computing resources and energy consumption.Furthermore,we propose a multiple iterative Dynamic Spike Timing Dependent Plasticity(DSTDP)algorithm to enhance the accuracy of the LSNN model.Experiments on two server fault datasets demonstrate significant precision,recall,and F1 improvements across three diagnosis dimensions.Simultaneously,lightweight indicators such as Params and FLOPs significantly reduced,showcasing the LSNN’s advanced performance and model efficiency.To conclude,experiment results on a pair of datasets indicate that the LSNN model surpasses traditional models and achieves cutting-edge outcomes in network fault diagnosis tasks. 展开更多
关键词 Network fault diagnosis edge networks Izhikevich neurons PRUNING dynamic spike timing dependent plasticity learning
下载PDF
Dynamic Vision-Based Machinery Fault Diagnosis With Cross-Modality Feature Alignment
18
作者 Xiang Li Shupeng Yu +2 位作者 Yaguo Lei Naipeng Li Bin Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2068-2081,共14页
Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In... Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In many industrial scenarios,contactless sensors are more preferred.The event camera is an emerging bio-inspired technology for vision sensing,which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency.It offers a promising tool for contactless machine vibration sensing and fault diagnosis.However,the dynamic vision-based methods suffer from variations of practical factors such as camera position,machine operating condition,etc.Furthermore,as a new sensing technology,the labeled dynamic vision data are limited,which generally cannot cover a wide range of machine fault modes.Aiming at these challenges,a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper.It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance.A crossmodality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer.An event erasing method is further proposed for improving model robustness against variations.The proposed method can effectively identify unseen fault mode with dynamic vision data.Experiments on two rotating machine monitoring datasets are carried out for validations,and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis. 展开更多
关键词 Condition monitoring domain generalization eventbased camera fault diagnosis machine vision
下载PDF
Complementary-Label Adversarial Domain Adaptation Fault Diagnosis Network under Time-Varying Rotational Speed and Weakly-Supervised Conditions
19
作者 Siyuan Liu Jinying Huang +2 位作者 Jiancheng Ma Licheng Jing Yuxuan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期761-777,共17页
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac... Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method. 展开更多
关键词 Time-varying rotational speed weakly-supervised fault diagnosis domain adaptation
下载PDF
Bearing Fault Diagnosis Based on Deep Discriminative Adversarial Domain Adaptation Neural Networks
20
作者 Jinxi Guo Kai Chen +5 位作者 Jiehui Liu Yuhao Ma Jie Wu Yaochun Wu Xiaofeng Xue Jianshen Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2619-2640,共22页
Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received in... Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels. 展开更多
关键词 fault diagnosis transfer learning domain adaptation discriminative feature learning correlation alignment
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部