Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research objec...Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research object,and a fault diagnosis system was proposed based on knowledge graph.The subject–relation–object triples are defined based on CRDM unstructured data,including design specification,operation and maintenance manual,alarm list,and other forms of expert experience.In this study,we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events.A three-layer robustly optimized bidirectional encoder representation from transformers(RBT3)pre-training approach combined with a text convolutional neural network(TextCNN)was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query.The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously.Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction.Additionally,a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically.Furthermore,the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system.Finally,a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed,making the CRDM fault diagnosis process intuitive and effective.展开更多
A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from ...A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks.展开更多
With the rapid development of the Internet of Things(IoT),the automation of edge-side equipment has emerged as a significant trend.The existing fault diagnosismethods have the characteristics of heavy computing and st...With the rapid development of the Internet of Things(IoT),the automation of edge-side equipment has emerged as a significant trend.The existing fault diagnosismethods have the characteristics of heavy computing and storage load,and most of them have computational redundancy,which is not suitable for deployment on edge devices with limited resources and capabilities.This paper proposes a novel two-stage edge-side fault diagnosis method based on double knowledge distillation.First,we offer a clustering-based self-knowledge distillation approach(Cluster KD),which takes the mean value of the sample diagnosis results,clusters them,and takes the clustering results as the terms of the loss function.It utilizes the correlations between faults of the same type to improve the accuracy of the teacher model,especially for fault categories with high similarity.Then,the double knowledge distillation framework uses ordinary knowledge distillation to build a lightweightmodel for edge-side deployment.We propose a two-stage edge-side fault diagnosismethod(TSM)that separates fault detection and fault diagnosis into different stages:in the first stage,a fault detection model based on a denoising auto-encoder(DAE)is adopted to achieve fast fault responses;in the second stage,a diverse convolutionmodel with variance weighting(DCMVW)is used to diagnose faults in detail,extracting features frommicro andmacro perspectives.Through comparison experiments conducted on two fault datasets,it is proven that the proposed method has high accuracy,low delays,and small computation,which is suitable for intelligent edge-side fault diagnosis.In addition,experiments show that our approach has a smooth training process and good balance.展开更多
Based on systematically analyzing the procedure of hazard and operability (HAZOP) study, the author introduces a method of modeling fault diagnosis with the Petri net with fuzzy colors, in which the fuzzy information ...Based on systematically analyzing the procedure of hazard and operability (HAZOP) study, the author introduces a method of modeling fault diagnosis with the Petri net with fuzzy colors, in which the fuzzy information can be represented effectively in the process of analysis. The author proposes the architecture of a knowledge base, which integrates HAZOP analysis and fault diagnosis, and provides the conditions for constructing the knowledge-based expert system. The author also presents a method of knowledge representation for on-line HAZOP analysis and on-line fault diagnosis is presented based on the technology of Petri net with fuzzy colors, which establishes a technological fundamental for integrating the automatic HAZOP analysis and fault diagnosis.展开更多
In this paper, a genetic algorithm based knowledge auto acquisition approach for fault diagnosis is proposed. Under the circumstances that diagnostic examples are available but no empirical knowledge can be obtained,...In this paper, a genetic algorithm based knowledge auto acquisition approach for fault diagnosis is proposed. Under the circumstances that diagnostic examples are available but no empirical knowledge can be obtained, knowledge for fault diagnosis can be展开更多
Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understan...Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understandable knowledge expression and transparent reasoning process,the belief rule base(BRB)has extensive applications as an interpretable expert system in fault diagnosis.Optimization is an effective means to weaken the subjectivity of experts in BRB,where the interpretability of BRB may be weakened.Hence,to obtain a credible result,the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed,which are manifested in deviation from the initial judgement of experts and over-optimization of parameters.For these two factors,three indexes are proposed,namely the consistency index of rules,consistency index of the rule base and over-optimization index,tomeasure the interpretability of the optimizedmodel.Considering both the accuracy and interpretability of amodel,an improved coordinate ascent(I-CA)algorithmis proposed to fine-tune the parameters of the fault diagnosis model based on BRB.In I-CA,the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm.Furthermore,the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model.Finally,a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method.展开更多
Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor fault...Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.展开更多
Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and ...Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method.展开更多
This paper proposes a novel locally linear backpropagation based contribution(LLBBC) for nonlinear process fault diagnosis. As a method based on the deep learning model of auto-encoder(AE), LLBBC can deal with the fau...This paper proposes a novel locally linear backpropagation based contribution(LLBBC) for nonlinear process fault diagnosis. As a method based on the deep learning model of auto-encoder(AE), LLBBC can deal with the fault diagnosis problem through extracting nonlinear features. When the on-line fault diagnosis task is in progress, a locally linear model is firstly built at the current fault sample. According to the basic idea of reconstruction based contribution(RBC), the propagation of fault information is described by using back-propagation(BP) algorithm. Then, a contribution index is established to measure the correlation between the variable and the fault, and the final diagnosis result is obtained by searching variables with large contributions. The smearing effect, which is an important factor affecting the performance of fault diagnosis, can be suppressed as well,and the theoretical analysis reveals that the correct diagnosis can be guaranteed by LLBBC. Finally, the feasibility and effectiveness of the proposed method are verified through a nonlinear numerical example and the Tennessee Eastman benchmark process.展开更多
Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is ...Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is proposed. The algorithm applies operators such as selection, crossover and mutation to evolve an initial population of diagnostic rules. Especially, a self adaptive method is put forward to regulate the crossover rate and mutation rate. In the end, a knowledge acquisition problem of a simple network fault diagnostic system is simulated, the results of simulation show that the improved approach can solve the problem of convergence better.展开更多
A fault diagnosis method of knowledge based fuzzy neural network is proposed for complex process, which is hard to develop practical mathematical model. Fault detection is performed through a knowledge based system, w...A fault diagnosis method of knowledge based fuzzy neural network is proposed for complex process, which is hard to develop practical mathematical model. Fault detection is performed through a knowledge based system, where fault detection heuristic rules have been generated from deep and shallow knowledge of the process. The fuzzy neural network performs the fault diagnosis task. This method does not need practical mathematical models of objects, so it is a strong implement for complex process.展开更多
A fault diagnosis expert system for a heavy motor used in a rolling mill is established in this paper. The fault diagnosis knowledge base was built, and its knowledge was represented by production rules. The knowledge...A fault diagnosis expert system for a heavy motor used in a rolling mill is established in this paper. The fault diagnosis knowledge base was built, and its knowledge was represented by production rules. The knowledge base includes daily inspection system, brief diagnosis system and precise diagnosis system. A pull down menu was adopted for the management of the knowledge base. The system can run under the help of expert system development tools. Practical examples show that the expert system can diagnose faults rapidly and precisely.展开更多
Based on the analysis of fault diagnosis knowledge of letter sorting machine, this paper proposes a processing method by which the fault diagnosis knowledge is divided into exact knowledge, inadequate knowledge and fu...Based on the analysis of fault diagnosis knowledge of letter sorting machine, this paper proposes a processing method by which the fault diagnosis knowledge is divided into exact knowledge, inadequate knowledge and fuzzy knowledge. Then their presenting and implementing form in fault diagnosis expert system is discussed and studied. It is proved that the expert system has good feasibility in the field of the diagnosis of letter sorting machine.展开更多
It is vital to establish an interpretable fault diagnosis model for critical equipment.Belief Rule Base(BRB)is an interpretable expert system gradually applied in fault diagnosis.However,the expert knowledge cannot be...It is vital to establish an interpretable fault diagnosis model for critical equipment.Belief Rule Base(BRB)is an interpretable expert system gradually applied in fault diagnosis.However,the expert knowledge cannot be utilized to establish the initial BRB accurately if there are multiple referential grades in different fault features.In addition,the interpretability of BRB-based fault diagnosis is destroyed in the optimization process,which reflects in two aspects:deviation from the initial expert judgment and over-optimization of parameters.To solve these problems,a new interpretable fault diagnosis model based on BRB and probability table,called the BRB-P,is proposed in this paper.Compared with the traditional BRB,the BRB-P constructed by the probability table is more accurate.Then,the interpretability constraints,i.e.,the credibility of expert knowledge,the penalty factor and the rule-activation factor,are inserted into the projection covariance matrix adaption evolution strategy to maintain the interpretability of BRB-P.A case study of the aerospace relay is conducted to verify the effectiveness of the proposed method.展开更多
Due to the excellent performance in complex systems modeling under small samples and uncertainty,Belief Rule Base(BRB)expert system has been widely applied in fault diagnosis.However,the fault diagnosis process for co...Due to the excellent performance in complex systems modeling under small samples and uncertainty,Belief Rule Base(BRB)expert system has been widely applied in fault diagnosis.However,the fault diagnosis process for complex mechanical equipment normally needs multiple attributes,which can lead to the rule number explosion problem in BRB,and limit the efficiency and accuracy.To solve this problem,a novel Combination Belief Rule Base(C-BRB)model based on Directed Acyclic Graph(DAG)structure is proposed in this paper.By dispersing numerous attributes into the parallel structure composed of different sub-BRBs,C-BRB can effectively reduce the amount of calculation with acceptable result.At the same time,a path selection strategy considering the accuracy of child nodes is designed in C-BRB to obtain the most suitable submodels.Finally,a fusion method based on Evidential Reasoning(ER)rule is used to combine the belief rules of C-BRB and generate the final results.To illustrate the effectiveness and reliability of the proposed method,a case study of fault diagnosis of rolling bearing is conducted,and the result is compared with other methods.展开更多
This paper develops a new fault diagnosis and tolerant control framework of sensor failure(SFDTC)for complex system such as rockets and missiles.The new framework aims to solve two problems:The lack of data and the mu...This paper develops a new fault diagnosis and tolerant control framework of sensor failure(SFDTC)for complex system such as rockets and missiles.The new framework aims to solve two problems:The lack of data and the multiple uncertainty of knowledge.In the SFDTC framework,two parts exist:The fault diagnosis model and the output reconstruction model.These two parts of the new framework are constructed based on the new developed belief rule base with power set(BRB-PS).The multiple uncertainty of knowledge can be addressed by the local ignorance and global ignorance in the new developed BRB-PS model.Then,the stability of the developed framework is proved by the output error of the BRB-PS model.For complex system,the sensor state is determined by many factors and experts cannot provide accurate knowledge.The multiple uncertain knowledge will reduce the performance of the initial SDFTC framework.Therefore,in the SFDTC framework,to handle the influence of the uncertainty of expert knowledge and improve the framework performance,a new optimization model with two optimization goals is developed to ensure the smallest output uncertainty and the highest accuracy simultaneously.A case study is conducted to illustrate the effectiveness of the developed framework.展开更多
Hydraulic piston pumps are commonly used in aircraft. In order to improve the viability of aircraft and energy efficiency, intelligent variable pressure pump systems have been used in aircraft hydraulic systems more a...Hydraulic piston pumps are commonly used in aircraft. In order to improve the viability of aircraft and energy efficiency, intelligent variable pressure pump systems have been used in aircraft hydraulic systems more and more widely. Efficient fault diagnosis plays an important role in improving the reliability and performance of hydraulic systems. In this paper, a fault diagnosis method of an intelligent hydraulic pump system(IHPS) based on a nonlinear unknown input observer(NUIO) is proposed. Different from factors of a full-order Luenberger-type unknown input observer, nonlinear factors of the IHPS are considered in the NUIO. Firstly, a new type of intelligent pump is presented, the mathematical model of which is established to describe the IHPS. Taking into account the real-time requirements of the IHPS and the special structure of the pump, the mechanism of the intelligent pump and failure modes are analyzed and two typical failure modes are obtained. Furthermore, a NUIO of the IHPS is performed based on the output pressure and swashplate angle signals. With the residual error signals produced by the NUIO, online intelligent pump failure occurring in real-time can be detected. Lastly, through analysis and simulation, it is confirmed that this diagnostic method could accurately diagnose and isolate those typical failure modes of the nonlinear IHPS. The method proposed in this paper is of great significance in improving the reliability of the IHPS.展开更多
The auto body process monitoring and the root cause diagnosis based on data-driven approaches are vital ways to improve the dimension quality of sheet metal assemblies. However, during the launch time of the process m...The auto body process monitoring and the root cause diagnosis based on data-driven approaches are vital ways to improve the dimension quality of sheet metal assemblies. However, during the launch time of the process mass production with an off-line measurement strategy, the traditional statistical methods are difficult to perform process control effectively. Based on the powerful abilities in information fusion, a systematic Bayesian based quality control approach is presented to solve the quality problems in condition of incomplete dataset. For the process monitoring, a Bayesian estimation method is used to give out-of-control signals in the process. With the abnormal evidence, the Bayesian network(BN) approach is employed to identify the fixture root causes. A novel BN structure and the conditional probability training methods based on process knowledge representation are proposed to obtain the diagnostic model. Furthermore, based on the diagnostic performance analysis, a case study is used to evaluate the effectiveness of the proposed approach. Results show that the Bayesian based method has a better diagnostic performance for multi-fault cases.展开更多
In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty ...In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.展开更多
As a data-driven approach, Deep Learning(DL)-based fault diagnosis methods need to collect the relatively comprehensive data on machine fault types to achieve satisfactory performance. A mechanical system may include ...As a data-driven approach, Deep Learning(DL)-based fault diagnosis methods need to collect the relatively comprehensive data on machine fault types to achieve satisfactory performance. A mechanical system may include multiple submachines in the real-world. During condition monitoring of a mechanical system, fault data are distributed in a continuous flow of constantly generated information and new faults will inevitably occur in unconsidered submachines, which are also called machine increments. Therefore, adequately collecting fault data in advance is difficult. Limited by the characteristics of DL, training existing models directly with new fault data of new submachines leads to catastrophic forgetting of old tasks, while the cost of collecting all known data to retrain the models is excessively high. DL-based fault diagnosis methods cannot learn continually and adaptively in dynamic environments. A new Continual Learning Fault Diagnosis method(CLFD) is proposed in this paper to solve a series of fault diagnosis tasks with machine increments. The stability–plasticity dilemma is an intrinsic issue in continual learning. The core of CLFD is the proposed Dual-branch Adaptive Aggregation Residual Network(DAARN).Two types of residual blocks are created in each block layer of DAARN: steady and dynamic blocks. The stability–plasticity dilemma is solved by assigning them with adaptive aggregation weights to balance stability and plasticity, and a bi-level optimization program is used to optimize adaptive aggregation weights and model parameters. In addition, a feature-level knowledge distillation loss function is proposed to further overcome catastrophic forgetting. CLFD is then applied to the fault diagnosis case with machine increments. Results demonstrate that CLFD outperforms other continual learning methods and has satisfactory robustness.展开更多
基金the Young Potential Program of Shanghai Institute of Applied Physics,Chinese Academy of Sciences(No.E0553101).
文摘Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research object,and a fault diagnosis system was proposed based on knowledge graph.The subject–relation–object triples are defined based on CRDM unstructured data,including design specification,operation and maintenance manual,alarm list,and other forms of expert experience.In this study,we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events.A three-layer robustly optimized bidirectional encoder representation from transformers(RBT3)pre-training approach combined with a text convolutional neural network(TextCNN)was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query.The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously.Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction.Additionally,a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically.Furthermore,the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system.Finally,a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed,making the CRDM fault diagnosis process intuitive and effective.
基金Project supported by the National Major Science and Technology Foundation of China during the 10th Five-Year Plan Period(No.2001BA204B05-KHK Z0009)
文摘A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks.
基金supported by the National Key R&D Program of China(2019YFB2103202).
文摘With the rapid development of the Internet of Things(IoT),the automation of edge-side equipment has emerged as a significant trend.The existing fault diagnosismethods have the characteristics of heavy computing and storage load,and most of them have computational redundancy,which is not suitable for deployment on edge devices with limited resources and capabilities.This paper proposes a novel two-stage edge-side fault diagnosis method based on double knowledge distillation.First,we offer a clustering-based self-knowledge distillation approach(Cluster KD),which takes the mean value of the sample diagnosis results,clusters them,and takes the clustering results as the terms of the loss function.It utilizes the correlations between faults of the same type to improve the accuracy of the teacher model,especially for fault categories with high similarity.Then,the double knowledge distillation framework uses ordinary knowledge distillation to build a lightweightmodel for edge-side deployment.We propose a two-stage edge-side fault diagnosismethod(TSM)that separates fault detection and fault diagnosis into different stages:in the first stage,a fault detection model based on a denoising auto-encoder(DAE)is adopted to achieve fast fault responses;in the second stage,a diverse convolutionmodel with variance weighting(DCMVW)is used to diagnose faults in detail,extracting features frommicro andmacro perspectives.Through comparison experiments conducted on two fault datasets,it is proven that the proposed method has high accuracy,low delays,and small computation,which is suitable for intelligent edge-side fault diagnosis.In addition,experiments show that our approach has a smooth training process and good balance.
文摘Based on systematically analyzing the procedure of hazard and operability (HAZOP) study, the author introduces a method of modeling fault diagnosis with the Petri net with fuzzy colors, in which the fuzzy information can be represented effectively in the process of analysis. The author proposes the architecture of a knowledge base, which integrates HAZOP analysis and fault diagnosis, and provides the conditions for constructing the knowledge-based expert system. The author also presents a method of knowledge representation for on-line HAZOP analysis and on-line fault diagnosis is presented based on the technology of Petri net with fuzzy colors, which establishes a technological fundamental for integrating the automatic HAZOP analysis and fault diagnosis.
文摘In this paper, a genetic algorithm based knowledge auto acquisition approach for fault diagnosis is proposed. Under the circumstances that diagnostic examples are available but no empirical knowledge can be obtained, knowledge for fault diagnosis can be
基金supported by the Natural Science Foundation of China (No.61833016)the Shaanxi Outstanding Youth Science Foundation (No.2020JC-34)the Shaanxi Science and Technology Innovation Team (No.2022TD-24).
文摘Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understandable knowledge expression and transparent reasoning process,the belief rule base(BRB)has extensive applications as an interpretable expert system in fault diagnosis.Optimization is an effective means to weaken the subjectivity of experts in BRB,where the interpretability of BRB may be weakened.Hence,to obtain a credible result,the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed,which are manifested in deviation from the initial judgement of experts and over-optimization of parameters.For these two factors,three indexes are proposed,namely the consistency index of rules,consistency index of the rule base and over-optimization index,tomeasure the interpretability of the optimizedmodel.Considering both the accuracy and interpretability of amodel,an improved coordinate ascent(I-CA)algorithmis proposed to fine-tune the parameters of the fault diagnosis model based on BRB.In I-CA,the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm.Furthermore,the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model.Finally,a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China(Grant No. 51275264)National Hi-tech Research and Development Program of China(863 Program, Grant No. 2011AA11A269)
文摘Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.
基金supported by the Postdoctoral Science Foundation of China under Grant No.2020M683736partly by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456+2 种基金partly by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038partly by the Haiyan foundation of Harbin Medical University Cancer Hospital under Grant No.JJMS2021-28partly by the graduate academic innovation project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 and HSDSSCX2022-19.
文摘Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method.
基金supported by the Key Project of National Natural Science Foundation of China(61933013)Ningbo 13th Five-year Marine Economic Innovation and Development Demonstration Project(NBH Y-2017-Z1)。
文摘This paper proposes a novel locally linear backpropagation based contribution(LLBBC) for nonlinear process fault diagnosis. As a method based on the deep learning model of auto-encoder(AE), LLBBC can deal with the fault diagnosis problem through extracting nonlinear features. When the on-line fault diagnosis task is in progress, a locally linear model is firstly built at the current fault sample. According to the basic idea of reconstruction based contribution(RBC), the propagation of fault information is described by using back-propagation(BP) algorithm. Then, a contribution index is established to measure the correlation between the variable and the fault, and the final diagnosis result is obtained by searching variables with large contributions. The smearing effect, which is an important factor affecting the performance of fault diagnosis, can be suppressed as well,and the theoretical analysis reveals that the correct diagnosis can be guaranteed by LLBBC. Finally, the feasibility and effectiveness of the proposed method are verified through a nonlinear numerical example and the Tennessee Eastman benchmark process.
文摘Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is proposed. The algorithm applies operators such as selection, crossover and mutation to evolve an initial population of diagnostic rules. Especially, a self adaptive method is put forward to regulate the crossover rate and mutation rate. In the end, a knowledge acquisition problem of a simple network fault diagnostic system is simulated, the results of simulation show that the improved approach can solve the problem of convergence better.
文摘A fault diagnosis method of knowledge based fuzzy neural network is proposed for complex process, which is hard to develop practical mathematical model. Fault detection is performed through a knowledge based system, where fault detection heuristic rules have been generated from deep and shallow knowledge of the process. The fuzzy neural network performs the fault diagnosis task. This method does not need practical mathematical models of objects, so it is a strong implement for complex process.
文摘A fault diagnosis expert system for a heavy motor used in a rolling mill is established in this paper. The fault diagnosis knowledge base was built, and its knowledge was represented by production rules. The knowledge base includes daily inspection system, brief diagnosis system and precise diagnosis system. A pull down menu was adopted for the management of the knowledge base. The system can run under the help of expert system development tools. Practical examples show that the expert system can diagnose faults rapidly and precisely.
文摘Based on the analysis of fault diagnosis knowledge of letter sorting machine, this paper proposes a processing method by which the fault diagnosis knowledge is divided into exact knowledge, inadequate knowledge and fuzzy knowledge. Then their presenting and implementing form in fault diagnosis expert system is discussed and studied. It is proved that the expert system has good feasibility in the field of the diagnosis of letter sorting machine.
基金supported by the National Natural Science Foundation of China(No.61833016)the Shaanxi Outstanding Youth Science Foundation,China(No.2020JC-34)+1 种基金the Shaanxi Science and Technology Innovation Team,China(No.2022TD-24)the Natural Science Foundation of Heilongjiang Province of China(No.LH2021F038)。
文摘It is vital to establish an interpretable fault diagnosis model for critical equipment.Belief Rule Base(BRB)is an interpretable expert system gradually applied in fault diagnosis.However,the expert knowledge cannot be utilized to establish the initial BRB accurately if there are multiple referential grades in different fault features.In addition,the interpretability of BRB-based fault diagnosis is destroyed in the optimization process,which reflects in two aspects:deviation from the initial expert judgment and over-optimization of parameters.To solve these problems,a new interpretable fault diagnosis model based on BRB and probability table,called the BRB-P,is proposed in this paper.Compared with the traditional BRB,the BRB-P constructed by the probability table is more accurate.Then,the interpretability constraints,i.e.,the credibility of expert knowledge,the penalty factor and the rule-activation factor,are inserted into the projection covariance matrix adaption evolution strategy to maintain the interpretability of BRB-P.A case study of the aerospace relay is conducted to verify the effectiveness of the proposed method.
基金supported by the Natural Science Foundation of China(Nos.61773388,61751304,61833016,61702142,U1811264 and 61966009)the Shaanxi Outstanding Youth Science Foundation,China(No.2020JC-34)+2 种基金the Key Research and Development Plan of Hainan,China(No.ZDYF2019007)China Postdoctoral Science Foundation(No.2020M673668)Guangxi Key Laboratory of Trusted Software,China(No.KX202050)。
文摘Due to the excellent performance in complex systems modeling under small samples and uncertainty,Belief Rule Base(BRB)expert system has been widely applied in fault diagnosis.However,the fault diagnosis process for complex mechanical equipment normally needs multiple attributes,which can lead to the rule number explosion problem in BRB,and limit the efficiency and accuracy.To solve this problem,a novel Combination Belief Rule Base(C-BRB)model based on Directed Acyclic Graph(DAG)structure is proposed in this paper.By dispersing numerous attributes into the parallel structure composed of different sub-BRBs,C-BRB can effectively reduce the amount of calculation with acceptable result.At the same time,a path selection strategy considering the accuracy of child nodes is designed in C-BRB to obtain the most suitable submodels.Finally,a fusion method based on Evidential Reasoning(ER)rule is used to combine the belief rules of C-BRB and generate the final results.To illustrate the effectiveness and reliability of the proposed method,a case study of fault diagnosis of rolling bearing is conducted,and the result is compared with other methods.
基金supported in part by the Natural Science Foundation of China under Grant Nos. 61370031,61374138, 61973046, 61833013, 61773389 and 71601168the Fundamental Research Funds for the Central Universities under Grant No. D5000210690+1 种基金the Shaanxi Outstanding Youth Science Foundation under Grant No.2020JC-34the Natural Science Foundation of Shaanxi Province under Grant Nos. 2020JM-357, 2022JQ-580,2021KJXX-22 and 2020JQ-298
文摘This paper develops a new fault diagnosis and tolerant control framework of sensor failure(SFDTC)for complex system such as rockets and missiles.The new framework aims to solve two problems:The lack of data and the multiple uncertainty of knowledge.In the SFDTC framework,two parts exist:The fault diagnosis model and the output reconstruction model.These two parts of the new framework are constructed based on the new developed belief rule base with power set(BRB-PS).The multiple uncertainty of knowledge can be addressed by the local ignorance and global ignorance in the new developed BRB-PS model.Then,the stability of the developed framework is proved by the output error of the BRB-PS model.For complex system,the sensor state is determined by many factors and experts cannot provide accurate knowledge.The multiple uncertain knowledge will reduce the performance of the initial SDFTC framework.Therefore,in the SFDTC framework,to handle the influence of the uncertainty of expert knowledge and improve the framework performance,a new optimization model with two optimization goals is developed to ensure the smallest output uncertainty and the highest accuracy simultaneously.A case study is conducted to illustrate the effectiveness of the developed framework.
基金co-supported by the National Natural Science Foundation of China (Nos. 51620105010, 51575019 and 51675019)National Basic Research Program of China (No. 2014CB046400)111 Program of China
文摘Hydraulic piston pumps are commonly used in aircraft. In order to improve the viability of aircraft and energy efficiency, intelligent variable pressure pump systems have been used in aircraft hydraulic systems more and more widely. Efficient fault diagnosis plays an important role in improving the reliability and performance of hydraulic systems. In this paper, a fault diagnosis method of an intelligent hydraulic pump system(IHPS) based on a nonlinear unknown input observer(NUIO) is proposed. Different from factors of a full-order Luenberger-type unknown input observer, nonlinear factors of the IHPS are considered in the NUIO. Firstly, a new type of intelligent pump is presented, the mathematical model of which is established to describe the IHPS. Taking into account the real-time requirements of the IHPS and the special structure of the pump, the mechanism of the intelligent pump and failure modes are analyzed and two typical failure modes are obtained. Furthermore, a NUIO of the IHPS is performed based on the output pressure and swashplate angle signals. With the residual error signals produced by the NUIO, online intelligent pump failure occurring in real-time can be detected. Lastly, through analysis and simulation, it is confirmed that this diagnostic method could accurately diagnose and isolate those typical failure modes of the nonlinear IHPS. The method proposed in this paper is of great significance in improving the reliability of the IHPS.
基金the National Natural Science Foundation of China(Nos.51405299 and 51175340)the Natural Science Foundation of Shanghai(No.14ZR1428700)
文摘The auto body process monitoring and the root cause diagnosis based on data-driven approaches are vital ways to improve the dimension quality of sheet metal assemblies. However, during the launch time of the process mass production with an off-line measurement strategy, the traditional statistical methods are difficult to perform process control effectively. Based on the powerful abilities in information fusion, a systematic Bayesian based quality control approach is presented to solve the quality problems in condition of incomplete dataset. For the process monitoring, a Bayesian estimation method is used to give out-of-control signals in the process. With the abnormal evidence, the Bayesian network(BN) approach is employed to identify the fixture root causes. A novel BN structure and the conditional probability training methods based on process knowledge representation are proposed to obtain the diagnostic model. Furthermore, based on the diagnostic performance analysis, a case study is used to evaluate the effectiveness of the proposed approach. Results show that the Bayesian based method has a better diagnostic performance for multi-fault cases.
文摘In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.
基金supported by the National Natural Science Foundation of China(Nos.52272440,51875375)the China Postdoctoral Science Foundation Funded Project(No.2021M701503).
文摘As a data-driven approach, Deep Learning(DL)-based fault diagnosis methods need to collect the relatively comprehensive data on machine fault types to achieve satisfactory performance. A mechanical system may include multiple submachines in the real-world. During condition monitoring of a mechanical system, fault data are distributed in a continuous flow of constantly generated information and new faults will inevitably occur in unconsidered submachines, which are also called machine increments. Therefore, adequately collecting fault data in advance is difficult. Limited by the characteristics of DL, training existing models directly with new fault data of new submachines leads to catastrophic forgetting of old tasks, while the cost of collecting all known data to retrain the models is excessively high. DL-based fault diagnosis methods cannot learn continually and adaptively in dynamic environments. A new Continual Learning Fault Diagnosis method(CLFD) is proposed in this paper to solve a series of fault diagnosis tasks with machine increments. The stability–plasticity dilemma is an intrinsic issue in continual learning. The core of CLFD is the proposed Dual-branch Adaptive Aggregation Residual Network(DAARN).Two types of residual blocks are created in each block layer of DAARN: steady and dynamic blocks. The stability–plasticity dilemma is solved by assigning them with adaptive aggregation weights to balance stability and plasticity, and a bi-level optimization program is used to optimize adaptive aggregation weights and model parameters. In addition, a feature-level knowledge distillation loss function is proposed to further overcome catastrophic forgetting. CLFD is then applied to the fault diagnosis case with machine increments. Results demonstrate that CLFD outperforms other continual learning methods and has satisfactory robustness.