This paper presents an adaptive method to solve the robust fault-tolerant control (FTC) problem for a class of large scale systems against actuator failures and lossy interconnection links. In terms of the special d...This paper presents an adaptive method to solve the robust fault-tolerant control (FTC) problem for a class of large scale systems against actuator failures and lossy interconnection links. In terms of the special distributed architectures, the adaptation laws are proposed to estimate the unknown eventual faults of actuators and interconnections, constant external disturbances, and controller parameters on-line. Then a class of distributed state feedback controllers are constructed for automatically compensating the fault and disturbance effects on systems based on the information from adaptive schemes. On the basis of Lyapunov stability theory, it shows that the resulting adaptive closed-loop large-scale system can be guaranteed to be asymptotically stable in the presence of uncertain faults of actuators and interconnections, and constant disturbances. The proposed design technique is finally evaluated in the light of a simulation example.展开更多
Based on satisfactory control strategy,a new method for robust passive fault tolerant controller is proposed for a class of uncertain discrete-time systems subject to actuator faults.The state-feedback gain matrix is ...Based on satisfactory control strategy,a new method for robust passive fault tolerant controller is proposed for a class of uncertain discrete-time systems subject to actuator faults.The state-feedback gain matrix is calculated by linear matrix inequality(LMI)technique.The designed controller guarantees that the closed-loop system meets the pre-specified consistent constraints on circular pole index and steady-state variance index simultaneously for normal case and possible actuator fault case.The consistency of the performance indices is discussed.Furthermore,with the mentioned indices constraints,a solution is obtained by convex optimal technique for the robust satisfactory fault-tolerant controller with optimal control-cost.展开更多
基金supported by the National Basic Research Program of China (973 Program) (No.2009CB320604)the Key Program of National Natural Science Foundation of China (No.60534010)+5 种基金National Natural Science Foundation of China (No.60674021)Program for New Century Excellent Talents in Universities (No.NCET-04-0283)the Funds for Creative Research Groups of China (No.60821063)Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0421)the Funds of Doctoral Program of Ministry of Education, China(No.20060145019)the 111 Project (No.B08015)
文摘This paper presents an adaptive method to solve the robust fault-tolerant control (FTC) problem for a class of large scale systems against actuator failures and lossy interconnection links. In terms of the special distributed architectures, the adaptation laws are proposed to estimate the unknown eventual faults of actuators and interconnections, constant external disturbances, and controller parameters on-line. Then a class of distributed state feedback controllers are constructed for automatically compensating the fault and disturbance effects on systems based on the information from adaptive schemes. On the basis of Lyapunov stability theory, it shows that the resulting adaptive closed-loop large-scale system can be guaranteed to be asymptotically stable in the presence of uncertain faults of actuators and interconnections, and constant disturbances. The proposed design technique is finally evaluated in the light of a simulation example.
基金Supported partly by the National Natural Science Foundation of China(60574082)the China Postdoctoral Science Foundation(20070411178)the Research Foundation of DML-HIT(HGDML-0502)
文摘Based on satisfactory control strategy,a new method for robust passive fault tolerant controller is proposed for a class of uncertain discrete-time systems subject to actuator faults.The state-feedback gain matrix is calculated by linear matrix inequality(LMI)technique.The designed controller guarantees that the closed-loop system meets the pre-specified consistent constraints on circular pole index and steady-state variance index simultaneously for normal case and possible actuator fault case.The consistency of the performance indices is discussed.Furthermore,with the mentioned indices constraints,a solution is obtained by convex optimal technique for the robust satisfactory fault-tolerant controller with optimal control-cost.