Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isol...Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isolation of multiple actuator or sensor faults in a class of nonlinear uncertain dynamical systems.Actuator and sensor fault isolation are accomplished in two independent modules,that monitor the system and are able to isolate the potential faulty actuator(s)or sensor(s).For the sensor fault isolation(SFI)case,a module is designed which monitors the system and utilizes an adaptive isolation threshold on the output residuals computed via a nonlinear estimation scheme that allows the isolation of single/multiple faulty sensor(s).For the actuator fault isolation(AFI)case,a second module is designed,which utilizes a learning-based scheme for adaptive approximation of faulty actuator(s)and,based on a reasoning decision logic and suitably designed AFI thresholds,the faulty actuator(s)set can be determined.The effectiveness of the proposed fault isolation approach developed in this paper is demonstrated through a simulation example.展开更多
Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation r...Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation results show that the measurement faults of the supply air temperature can lead to the increase in energy consumption.According to the fault characteristics,a data-driven method based on a neural network is presented to detect and diagnose the faults of air handling units.First,the historical data are selected to train the neural network so that it can recognize and predict the operation of the system.Then,the faults can be diagnosed by calculating the relative errors denoting the difference between the measuring values and the prediction outputs.Finally,the fault diagnosis strategy using the neural network is validated by using a simulator based on the TRNSYS platform.The results show that the neural network can diagnose different faults of the temperature,the flow rate and the pressure sensors in the air conditioning system.展开更多
Principal component analysis (PCA) is a useful tool in process fault detection, but offers little support on fault isolation. In this article, structured residual with strong isolation property is introduced. Althou...Principal component analysis (PCA) is a useful tool in process fault detection, but offers little support on fault isolation. In this article, structured residual with strong isolation property is introduced. Although it is easy to get the residual by transformation matrix in static process, unfortunately, it becomes hard in dynamic process under control loop. Therefore, partial dynamic PCA(PDPCA) is proposed to obtain structured residual and enhance the isolation ability of dynamic process monitoring, and a compound statistic is introduced to resolve the problem resulting from independent variables in every variable subset. Simulations on continuous stirred tank reactor (CSTR) show the effectiveness of the proposed method.展开更多
This paper is devoted to develop an expert system to manage the fault isolation and maintenance knowledge of the engine indication and crew alerting system (EICAS). The object oriented programming (OOP) technique and...This paper is devoted to develop an expert system to manage the fault isolation and maintenance knowledge of the engine indication and crew alerting system (EICAS). The object oriented programming (OOP) technique and the microsoft foundation class (MFC) are applied to set up a frame decision tree (FDT) which incorporates the expert system′s knowledge base, inference engine and user interface. Once a fault symptom indicated by the EICAS is input, by inferring step by step, the expert system can locate it in the engine and provide some homologous constructive maintenance advice.展开更多
In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation ...In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation underlying in the process measurements. However, it is difficult for PCA based fault detection results to be interpreted physically and to provide support for isolation. Some approaches incorporating process knowledge are developed, but the information is always shortage and deficient in practice. Therefore, this work proposes an adaptive partitioning PCA algorithm entirely based on operation data. The process feature space is partitioned into several sub-feature spaces. Constructed sub-block models can not only reflect the local behavior of process change, namely to grasp the intrinsic local information underlying the process changes, but also improve the fault detection and isolation through the combination of local fault detection results and reduction of smearing effect.The method is demonstrated in TE process, and the results show that the new method is much better in fault detection and isolation compared to conventional PCA method.展开更多
In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured resid...In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured residuals cannot isolate complex faults.This paper presents a multi-level strategy for complex fault isolation.An extraction procedure is employed to reduce the complex faults to simple ones and assign them to several levels.On each level,faults are isolated by their different responses in the structured residuals.Each residual is obtained insensitive to one fault but more sensitive to others.The faults on different levels are verified to have different residual responses and will not be confused.An entire incidence matrix containing residual response characteristics of all faults is obtained,based on which faults can be isolated.The proposed method is applied in the Tennessee Eastman process example,and the effectiveness and advantage are demonstrated.展开更多
Multi-way principal component analysis(MPCA)has received considerable attention and been widely used in process monitoring.A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensio...Multi-way principal component analysis(MPCA)has received considerable attention and been widely used in process monitoring.A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces.However,low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model.This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information.The MPCA model and the knowledge base are built based on the new subspace.Then,fault detection and isolation with the squared prediction error(SPE)statistic and the Hotelling(T2)statistic are also realized in process monitoring.When a fault occurs,fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables.For fault isolation of subspace based on the T2 statistic,the relationship between the statistic indicator and state variables is constructed,and the constraint conditions are presented to check the validity of fault isolation.Then,to improve the robustness of fault isolation to unexpected disturbances,the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation.Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system(ASCS)to prove the correctness and effectiveness of the algorithm.The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model,and sets the relationship between the state variables and fault detection indicators for fault isolation.展开更多
This paper presents a fault diagnosis method for process faults and sensor faults in a class of nonlinear uncertain systems.The fault detection and isolation architecture consists of a fault detection estimator and a ...This paper presents a fault diagnosis method for process faults and sensor faults in a class of nonlinear uncertain systems.The fault detection and isolation architecture consists of a fault detection estimator and a bank of adaptive isolation estimators,each corresponding to a particular fault type.Adaptive thresholds for fault detection and isolation are presented.Fault detectability conditions characterizing the class of process faults and sensor faults that are detectable by the presented method are derived.A simulation example of robotic arm is used to illustrate the effectiveness of the fault diagnosis method.展开更多
A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model u...A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI).展开更多
A robust nonlinear analytical redundancy (RNLAR) technique is presented to detect and isolate actuator and sensor faults in a mobile robot. Both model-plant-mismatch (MPM) and process disturbance are considered du...A robust nonlinear analytical redundancy (RNLAR) technique is presented to detect and isolate actuator and sensor faults in a mobile robot. Both model-plant-mismatch (MPM) and process disturbance are considered during fault detection. The RNLAR is used to design primary residual vectors (PRV), which are highly sensitive to the faults and less sensitive to MPM and process disturbance, for sensor and actuator fault detection. The PRVs are then transformed into a set of structured residual vectors (SRV) for fault isolation. Experimental results on a Pioneer 3-DX mobile robot are presented to justify the effectiveness of the RNLAR scheme.展开更多
State reconstruction approach is very useful for sensor fault isolation, reconstruction of faulty measurement and the determination of the number of components retained in the principal components analysis (PCA) mod...State reconstruction approach is very useful for sensor fault isolation, reconstruction of faulty measurement and the determination of the number of components retained in the principal components analysis (PCA) model. An extension of this approach based on a Nonlinear PCA (NLPCA) model is described in this paper. The NLPCA model is obtained using five layer neural network. A simulation example is given to show the performances of the proposed approach.展开更多
An application of the multiobjective fault detection and isolation(FDI) approach to an air-breathing hypersonic vehicle(HSV) longitudinal dynamics subject to disturbances is presented.Maintaining sustainable and s...An application of the multiobjective fault detection and isolation(FDI) approach to an air-breathing hypersonic vehicle(HSV) longitudinal dynamics subject to disturbances is presented.Maintaining sustainable and safe flight of HSV is a challenging task due to its strong coupling effects,variable operating conditions and possible failures of system components.A common type of system faults for aircraft including HSV is the loss of effectiveness of its actuators and sensors.To detect and isolate multiple actuator/sensor failures,a faulty linear parameter-varying(LPV) model of HSV is derived by converting actuator/system component faults into equivalent sensor faults.Then a bank of LPV FDI observers is designed to track individual fault with minimum error and suppress the effects of disturbances and other fault signals.The simulation results based on the nonlinear flexible HSV model and a nominal LPV controller demonstrate the effectiveness of the fault estimation technique for HSV.展开更多
In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multipie-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single...In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multipie-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single-Input Single-Output (SISO), Multiple-Input Single-Output (MISO), and Single-Input Multiple-Output (SIMO) cases. A proper distance function based on parameters obtained from parametric system identification method is used in the geometric approach. ARX (Auto Regressive with exogenous input) and VARX (Vector ARX) models with 12 parameters are used in all of the above-mentioned models. The obtained results reveal that by increasing the number of inputs, the classification errors reduce, even in the case of applying only one of the inputs in the computations. Furthermore, increasing the number of measured outputs in the FDI scheme results in decreasing classification errors. Also, it is shown that by using probabilistic space in the distance function, fault diagnosis scheme has better performance in comparison with the deterministic one.展开更多
One kind of steepest descent incremental projection learning algorithm for improving the training of radial basis function(RBF)neural network is proposed,which is applied to analog circuit fault isolation.This algorit...One kind of steepest descent incremental projection learning algorithm for improving the training of radial basis function(RBF)neural network is proposed,which is applied to analog circuit fault isolation.This algorithm simplified the structure of network through optimum output layer coefficient with incremental projection learning(IPL)algorithm,and adjusted the parameters of the neural activation function to control the network scale and improve the network approximation ability.Compared to the traditional algorithm,the improved algorithm has quicker convergence rate and higher isolation precision.Simulation results show that this improved RBF network has much better performance,which can be used in analog circuit fault isolation field.展开更多
A Fault detection and isolation(FDI)scheme for discrete time-delay system is proposed in this paper,which can not only detect but also isolate the faults.A time delay operator is introduced to resolve the problem bro...A Fault detection and isolation(FDI)scheme for discrete time-delay system is proposed in this paper,which can not only detect but also isolate the faults.A time delay operator is introduced to resolve the problem brought by the time-delay system.The design and computation for the FDI system is carried by computer math tool Maple,which can easily deal with the symbolic computation.Residuals in the form of parity space can be deduced from the recursion of the system equations.Further more,a generalized residual set is created using the freedom of the parity space redundancy.Thus,both fault detection and fault isolation have been accomplished.The proposed method has been verified by a numerical example.展开更多
This study proposes a scheme for state estimation and,consequently,fault diagnosis in nonlinear systems.Initially,an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault.B...This study proposes a scheme for state estimation and,consequently,fault diagnosis in nonlinear systems.Initially,an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault.By utilizing Lyapunov's direct method,the observer is proved to be optimal with respect to a performance function,including the magnitude of the observer gain and the convergence time.The observer gain is obtained by using approximation of Hamilton-Jacobi-Bellman(HJB)equation.The approximation is determined via an online trained neural network(NN).Next a class of affine nonlinear systems is considered which is subject to unknown disturbances in addition to fault signals.In this case,for each fault the original system is transformed to a new form in which the proposed optimal observer can be applied for state estimation and fault detection and isolation(FDI).Simulation results of a singlelink flexible joint robot(SLFJR)electric drive system show the effectiveness of the proposed methodology.展开更多
The behavior of matrix converter(MC) drive systems under the condition of MC short-circuit faults is comprehensively investigated. Two isolation strategies using semiconductors and high speed fuses(HSFs) for MC short-...The behavior of matrix converter(MC) drive systems under the condition of MC short-circuit faults is comprehensively investigated. Two isolation strategies using semiconductors and high speed fuses(HSFs) for MC short-circuit faults are examined and their performances are compared. The behavior of MC drive systems during the fuse action time under different operating conditions is explored. The feasibility of fault-tolerant operation during the fuse action time is also studied. The basic selection laws for the HSFs and the requirements for the passive components of the MC drive system from the point view of short-circuit faults are also discussed. Simulation results are used to demonstrate the feasibility of the proposed isolation strategies.展开更多
A new fault isolation and restoration technique employing local Ethemet network for the looped MV circuit is presented. It can isolate all short circuit faults in the loop within 300 ms and restore the supply of healt...A new fault isolation and restoration technique employing local Ethemet network for the looped MV circuit is presented. It can isolate all short circuit faults in the loop within 300 ms and restore the supply of healthy sections in less than 1.2 s. A reliable fault location method of isolating the single phase-to-ground fault (SPGF) in the non-effectively earthed network, which makes use of the fault generated transient signals, is also proposed. And the method locates the SPGF by examining transient zero-mode current correlation, which is not influenced by the neutral grounding mode and need no additional device. Laboratory test and simulation results show the proposed techniques are feasible, and significantly improve the supply reliability.展开更多
This paper addresses the gas path component and sensor fault diagnosis and isolation(FDI) for the auxiliary power unit(APU). A nonlinear dynamic model and a distributed state estimator are combined for the distributed...This paper addresses the gas path component and sensor fault diagnosis and isolation(FDI) for the auxiliary power unit(APU). A nonlinear dynamic model and a distributed state estimator are combined for the distributed control system. The distributed extended Kalman filter(DEKF)is served as a state estimator,which is utilized to estimate the gas path components’ flow capacity. The DEKF includes one main filter and five sub-filter groups related to five sensors of APU and each sub-filter yields local state flow capacity. The main filter collects and fuses the local state information,and then the state estimations are feedback to the sub-filters. The packet loss model is introduced in the DEKF algorithm in the APU distributed control architecture. FDI strategy with a performance index named weight sum of squared residuals(WSSR) is designed and used to identify the APU sensor fault by removing one sub-filter each time. The very sensor fault occurs as its performance index WSSR is different from the remaining sub-filter combinations. And the estimated value of the soft redundancy replaces the fault sensor measurement to isolate the fault measurement. It is worth noting that the proposed approach serves for not only the sensor failure but also the hybrid fault issue of APU gas path components and sensors. The simulation and comparison are systematically carried out by using the APU test data,and the superiority of the proposed methodology is verified.展开更多
In order to optimize test flow after the default flow is modified by a tester, a new software framework for the radar fault isolation is illustrated. This framework separates all mapping algorithms from test flows so ...In order to optimize test flow after the default flow is modified by a tester, a new software framework for the radar fault isolation is illustrated. This framework separates all mapping algorithms from test flows so as to modify flow and to insert mapping algorithm dynamically in testing process. Based on this framework, a kind of optimization method of test flow is proposed and studied. By defining an objective function, we can evaluate all candidate test flows so as to get an optimized flow. An example explains how to search the flow from candidate flows.展开更多
基金the European Research Council(ERC)under the ERC Synergy grant agreement No.951424(Water-Futures)the European Union’s Horizon 2020 research and innovation programme under grant agreement No.739551(KIOS CoE)the Government of the Republic of Cyprus through the Directorate General for European Programmes,Coordination and Development。
文摘Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isolation of multiple actuator or sensor faults in a class of nonlinear uncertain dynamical systems.Actuator and sensor fault isolation are accomplished in two independent modules,that monitor the system and are able to isolate the potential faulty actuator(s)or sensor(s).For the sensor fault isolation(SFI)case,a module is designed which monitors the system and utilizes an adaptive isolation threshold on the output residuals computed via a nonlinear estimation scheme that allows the isolation of single/multiple faulty sensor(s).For the actuator fault isolation(AFI)case,a second module is designed,which utilizes a learning-based scheme for adaptive approximation of faulty actuator(s)and,based on a reasoning decision logic and suitably designed AFI thresholds,the faulty actuator(s)set can be determined.The effectiveness of the proposed fault isolation approach developed in this paper is demonstrated through a simulation example.
文摘Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation results show that the measurement faults of the supply air temperature can lead to the increase in energy consumption.According to the fault characteristics,a data-driven method based on a neural network is presented to detect and diagnose the faults of air handling units.First,the historical data are selected to train the neural network so that it can recognize and predict the operation of the system.Then,the faults can be diagnosed by calculating the relative errors denoting the difference between the measuring values and the prediction outputs.Finally,the fault diagnosis strategy using the neural network is validated by using a simulator based on the TRNSYS platform.The results show that the neural network can diagnose different faults of the temperature,the flow rate and the pressure sensors in the air conditioning system.
基金the National Natural Science Foundation of China (No.60421002).
文摘Principal component analysis (PCA) is a useful tool in process fault detection, but offers little support on fault isolation. In this article, structured residual with strong isolation property is introduced. Although it is easy to get the residual by transformation matrix in static process, unfortunately, it becomes hard in dynamic process under control loop. Therefore, partial dynamic PCA(PDPCA) is proposed to obtain structured residual and enhance the isolation ability of dynamic process monitoring, and a compound statistic is introduced to resolve the problem resulting from independent variables in every variable subset. Simulations on continuous stirred tank reactor (CSTR) show the effectiveness of the proposed method.
文摘This paper is devoted to develop an expert system to manage the fault isolation and maintenance knowledge of the engine indication and crew alerting system (EICAS). The object oriented programming (OOP) technique and the microsoft foundation class (MFC) are applied to set up a frame decision tree (FDT) which incorporates the expert system′s knowledge base, inference engine and user interface. Once a fault symptom indicated by the EICAS is input, by inferring step by step, the expert system can locate it in the engine and provide some homologous constructive maintenance advice.
基金Support by the National Natural Science Foundation of China(61174114)the Research Fund for the Doctoral Program of Higher Education in China(20120101130016)Zhejiang Provincial Science and Technology Planning Projects of China(2014C31019)
文摘In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation underlying in the process measurements. However, it is difficult for PCA based fault detection results to be interpreted physically and to provide support for isolation. Some approaches incorporating process knowledge are developed, but the information is always shortage and deficient in practice. Therefore, this work proposes an adaptive partitioning PCA algorithm entirely based on operation data. The process feature space is partitioned into several sub-feature spaces. Constructed sub-block models can not only reflect the local behavior of process change, namely to grasp the intrinsic local information underlying the process changes, but also improve the fault detection and isolation through the combination of local fault detection results and reduction of smearing effect.The method is demonstrated in TE process, and the results show that the new method is much better in fault detection and isolation compared to conventional PCA method.
基金Supported by the National Natural Science Foundation of China(60574047)the National High Technology Research and Development Program of China(2007AA04Z168,2009AA04Z154)the Research Fund for the Doctoral Program of Higher Education in China(20050335018)
文摘In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured residuals cannot isolate complex faults.This paper presents a multi-level strategy for complex fault isolation.An extraction procedure is employed to reduce the complex faults to simple ones and assign them to several levels.On each level,faults are isolated by their different responses in the structured residuals.Each residual is obtained insensitive to one fault but more sensitive to others.The faults on different levels are verified to have different residual responses and will not be confused.An entire incidence matrix containing residual response characteristics of all faults is obtained,based on which faults can be isolated.The proposed method is applied in the Tennessee Eastman process example,and the effectiveness and advantage are demonstrated.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2011AA11A223)
文摘Multi-way principal component analysis(MPCA)has received considerable attention and been widely used in process monitoring.A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces.However,low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model.This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information.The MPCA model and the knowledge base are built based on the new subspace.Then,fault detection and isolation with the squared prediction error(SPE)statistic and the Hotelling(T2)statistic are also realized in process monitoring.When a fault occurs,fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables.For fault isolation of subspace based on the T2 statistic,the relationship between the statistic indicator and state variables is constructed,and the constraint conditions are presented to check the validity of fault isolation.Then,to improve the robustness of fault isolation to unexpected disturbances,the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation.Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system(ASCS)to prove the correctness and effectiveness of the algorithm.The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model,and sets the relationship between the state variables and fault detection indicators for fault isolation.
文摘This paper presents a fault diagnosis method for process faults and sensor faults in a class of nonlinear uncertain systems.The fault detection and isolation architecture consists of a fault detection estimator and a bank of adaptive isolation estimators,each corresponding to a particular fault type.Adaptive thresholds for fault detection and isolation are presented.Fault detectability conditions characterizing the class of process faults and sensor faults that are detectable by the presented method are derived.A simulation example of robotic arm is used to illustrate the effectiveness of the fault diagnosis method.
基金supported by the National Natural Science Foundation of China(616732546157310061573101)
文摘A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI).
基金This work was supported by Army Research Office (No. DAAD19-02-1-0160)Office of Naval Research (No. N00014-03-1-0052 and N00014-06-1-0146).
文摘A robust nonlinear analytical redundancy (RNLAR) technique is presented to detect and isolate actuator and sensor faults in a mobile robot. Both model-plant-mismatch (MPM) and process disturbance are considered during fault detection. The RNLAR is used to design primary residual vectors (PRV), which are highly sensitive to the faults and less sensitive to MPM and process disturbance, for sensor and actuator fault detection. The PRVs are then transformed into a set of structured residual vectors (SRV) for fault isolation. Experimental results on a Pioneer 3-DX mobile robot are presented to justify the effectiveness of the RNLAR scheme.
文摘State reconstruction approach is very useful for sensor fault isolation, reconstruction of faulty measurement and the determination of the number of components retained in the principal components analysis (PCA) model. An extension of this approach based on a Nonlinear PCA (NLPCA) model is described in this paper. The NLPCA model is obtained using five layer neural network. A simulation example is given to show the performances of the proposed approach.
文摘An application of the multiobjective fault detection and isolation(FDI) approach to an air-breathing hypersonic vehicle(HSV) longitudinal dynamics subject to disturbances is presented.Maintaining sustainable and safe flight of HSV is a challenging task due to its strong coupling effects,variable operating conditions and possible failures of system components.A common type of system faults for aircraft including HSV is the loss of effectiveness of its actuators and sensors.To detect and isolate multiple actuator/sensor failures,a faulty linear parameter-varying(LPV) model of HSV is derived by converting actuator/system component faults into equivalent sensor faults.Then a bank of LPV FDI observers is designed to track individual fault with minimum error and suppress the effects of disturbances and other fault signals.The simulation results based on the nonlinear flexible HSV model and a nominal LPV controller demonstrate the effectiveness of the fault estimation technique for HSV.
文摘In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multipie-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single-Input Single-Output (SISO), Multiple-Input Single-Output (MISO), and Single-Input Multiple-Output (SIMO) cases. A proper distance function based on parameters obtained from parametric system identification method is used in the geometric approach. ARX (Auto Regressive with exogenous input) and VARX (Vector ARX) models with 12 parameters are used in all of the above-mentioned models. The obtained results reveal that by increasing the number of inputs, the classification errors reduce, even in the case of applying only one of the inputs in the computations. Furthermore, increasing the number of measured outputs in the FDI scheme results in decreasing classification errors. Also, it is shown that by using probabilistic space in the distance function, fault diagnosis scheme has better performance in comparison with the deterministic one.
基金Pre-research Projects Fund of the National Ar ming Department,the 11th Five-year Projects
文摘One kind of steepest descent incremental projection learning algorithm for improving the training of radial basis function(RBF)neural network is proposed,which is applied to analog circuit fault isolation.This algorithm simplified the structure of network through optimum output layer coefficient with incremental projection learning(IPL)algorithm,and adjusted the parameters of the neural activation function to control the network scale and improve the network approximation ability.Compared to the traditional algorithm,the improved algorithm has quicker convergence rate and higher isolation precision.Simulation results show that this improved RBF network has much better performance,which can be used in analog circuit fault isolation field.
基金National Natural Science Foundation of China(No.60574081)
文摘A Fault detection and isolation(FDI)scheme for discrete time-delay system is proposed in this paper,which can not only detect but also isolate the faults.A time delay operator is introduced to resolve the problem brought by the time-delay system.The design and computation for the FDI system is carried by computer math tool Maple,which can easily deal with the symbolic computation.Residuals in the form of parity space can be deduced from the recursion of the system equations.Further more,a generalized residual set is created using the freedom of the parity space redundancy.Thus,both fault detection and fault isolation have been accomplished.The proposed method has been verified by a numerical example.
文摘This study proposes a scheme for state estimation and,consequently,fault diagnosis in nonlinear systems.Initially,an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault.By utilizing Lyapunov's direct method,the observer is proved to be optimal with respect to a performance function,including the magnitude of the observer gain and the convergence time.The observer gain is obtained by using approximation of Hamilton-Jacobi-Bellman(HJB)equation.The approximation is determined via an online trained neural network(NN).Next a class of affine nonlinear systems is considered which is subject to unknown disturbances in addition to fault signals.In this case,for each fault the original system is transformed to a new form in which the proposed optimal observer can be applied for state estimation and fault detection and isolation(FDI).Simulation results of a singlelink flexible joint robot(SLFJR)electric drive system show the effectiveness of the proposed methodology.
基金Project(50807002) supported by the National Natural Science Foundation of ChinaProject(SKLD10KM05) supported by Opening Fund of State Key Laboratory of Power System and Generation EquipmentsProject(201206025007) supported by the National Scholarship Fund,China
文摘The behavior of matrix converter(MC) drive systems under the condition of MC short-circuit faults is comprehensively investigated. Two isolation strategies using semiconductors and high speed fuses(HSFs) for MC short-circuit faults are examined and their performances are compared. The behavior of MC drive systems during the fuse action time under different operating conditions is explored. The feasibility of fault-tolerant operation during the fuse action time is also studied. The basic selection laws for the HSFs and the requirements for the passive components of the MC drive system from the point view of short-circuit faults are also discussed. Simulation results are used to demonstrate the feasibility of the proposed isolation strategies.
文摘A new fault isolation and restoration technique employing local Ethemet network for the looped MV circuit is presented. It can isolate all short circuit faults in the loop within 300 ms and restore the supply of healthy sections in less than 1.2 s. A reliable fault location method of isolating the single phase-to-ground fault (SPGF) in the non-effectively earthed network, which makes use of the fault generated transient signals, is also proposed. And the method locates the SPGF by examining transient zero-mode current correlation, which is not influenced by the neutral grounding mode and need no additional device. Laboratory test and simulation results show the proposed techniques are feasible, and significantly improve the supply reliability.
基金supported by the National Natural Science Foundation of China(No.91960110)the National Science and Technology Major Project(No. 2017-I0006-0007)the Fundamental Research Funds for the Central Universities(NP2022418)。
文摘This paper addresses the gas path component and sensor fault diagnosis and isolation(FDI) for the auxiliary power unit(APU). A nonlinear dynamic model and a distributed state estimator are combined for the distributed control system. The distributed extended Kalman filter(DEKF)is served as a state estimator,which is utilized to estimate the gas path components’ flow capacity. The DEKF includes one main filter and five sub-filter groups related to five sensors of APU and each sub-filter yields local state flow capacity. The main filter collects and fuses the local state information,and then the state estimations are feedback to the sub-filters. The packet loss model is introduced in the DEKF algorithm in the APU distributed control architecture. FDI strategy with a performance index named weight sum of squared residuals(WSSR) is designed and used to identify the APU sensor fault by removing one sub-filter each time. The very sensor fault occurs as its performance index WSSR is different from the remaining sub-filter combinations. And the estimated value of the soft redundancy replaces the fault sensor measurement to isolate the fault measurement. It is worth noting that the proposed approach serves for not only the sensor failure but also the hybrid fault issue of APU gas path components and sensors. The simulation and comparison are systematically carried out by using the APU test data,and the superiority of the proposed methodology is verified.
文摘In order to optimize test flow after the default flow is modified by a tester, a new software framework for the radar fault isolation is illustrated. This framework separates all mapping algorithms from test flows so as to modify flow and to insert mapping algorithm dynamically in testing process. Based on this framework, a kind of optimization method of test flow is proposed and studied. By defining an objective function, we can evaluate all candidate test flows so as to get an optimized flow. An example explains how to search the flow from candidate flows.