The 10kV distribution network is an essential component of the power system,and its stable operation is crucial for ensuring reliable power supply.However,various factors can lead to faults in the distribution network...The 10kV distribution network is an essential component of the power system,and its stable operation is crucial for ensuring reliable power supply.However,various factors can lead to faults in the distribution network.In order to enhance the safety and reliability of power distribution,this paper focuses on the analysis of faults in the 10kV distribution network caused by natural factors,operational factors,human factors,and equipment factors.It elucidates the various hazards resulting from distribution network faults and proposes corresponding preventive measures for different types of faults in the 10kV distribution network.The aim is to mitigate or reduce the impact of distribution network faults,ensuring the safe and stable operation of the distribution system.展开更多
In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line select...In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.展开更多
Fault location and distance protection are essential smart grid technologies ensuring reliability of the power system. This paper describes an accurate algorithm for locating faults on double-circuit transmission line...Fault location and distance protection are essential smart grid technologies ensuring reliability of the power system. This paper describes an accurate algorithm for locating faults on double-circuit transmission lines. The proposed approach is capable of identifying the faulted circuit of a parallel transmission line by checking the estimated fault location and fault resistance. Voltage and current measurements from only one of the terminals of the faulty line are used. No pre-fault data are required for the estimation. The lumped parameter line model considering shunt capacitance is utilized for the derivation of the algorithm. It’s assumed that line parameters are known and transmission lines are fully transposed. The method is applicable to all types of faults. It’s evinced by evaluation studies that the proposed algorithm can correctly determine the faulted circuit in most cases. For exceptional cases, the current waveforms during the fault can be used to help identify the faulted circuit. The proposed algorithm generates quite accurate fault location estimates, and may be suitable for distance relaying.展开更多
An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutin...An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutines,designated for locating faults on particular line sections,and additionally the procedure for selecting the valid subroutine.The subroutines are formulated with use of the generalized fault loop model and the distributed parameter line model is applied.Performed ATP-EMTP based evaluation has shown the validity of the derived fault location algorithm and its high accuracy.展开更多
When single phase earth fault occurs in the arc suppression coil grounding system, the amplitude of the transient capacitance current is high and decays fast, but the attenuation of the transient inductance current is...When single phase earth fault occurs in the arc suppression coil grounding system, the amplitude of the transient capacitance current is high and decays fast, but the attenuation of the transient inductance current is much slower. This paper analyses the DC component of fault branch, and has found it is much bigger than that of the normal branches in transient state. All the simulation results obtained from three compensation types, different fault time and different wave cycles show that the DC component of fault branch is much higher than that of those normal branches. These results verify the effectiveness of taking the DC component as the method of fault line selection in the arc suppression coil grounding system.展开更多
Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occu...Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occurred. Based on dictionary of Gabor atoms and matching pursuit algorithm, the method extracts the atomic components iteratively from the feature signals and translated them to damped sinusoidal components. Then we can obtain the parametrical and analytical representation of atomic components. The termination condition of decomposing iteration is determined by the threshold of the initial residual energy with the purpose of extract the features more effectively. Accordingly, the proposed method can extract the starting and ending moment of disturbances precisely as well as their magnitudes, frequencies and other features. The numerical examples demonstrate its effectiveness.展开更多
High resistance fault poses an enormous challenge to the existing algorithms of fault detection and fault classification.In this paper,the standard deviation and accumulation method are employed to perform the fault d...High resistance fault poses an enormous challenge to the existing algorithms of fault detection and fault classification.In this paper,the standard deviation and accumulation method are employed to perform the fault detection and classification.It is primarily built in two stages.Firstly,the standard deviations for the measured current’s signals of the local and remote terminals is computed to extract the fault feature.Secondly,the cumulative approach is used to enlarge the fault feature to perform the high resistance fault.The proposed scheme is known as Standard Deviation Index(SDI),and it is obtained for the three phases and zero sequence.The proposed algorithm has been tested through different fault circumstances such as multiple faults locations,fault resistances,and fault inception time.Moreover,far-end faults with high-resistance,faults happened nearby the terminal,faults considering variable loading angle,sudden load change,different sampling frequency,bad signaling and a fault occurred in the presence of series compensation are also discussed.The results show that the proposed scheme performed remarkably well regarding the fault with resistance up to 1.5kΩand can be detected within a millisecond after the fault inception.Additionally,the computational simplicity that characterizes the processes makes it more efficient and suitable for domain applications.展开更多
基金Tibet Autonomous Region Natural Fund Key Project(XZ202201ZR0024G)。
文摘The 10kV distribution network is an essential component of the power system,and its stable operation is crucial for ensuring reliable power supply.However,various factors can lead to faults in the distribution network.In order to enhance the safety and reliability of power distribution,this paper focuses on the analysis of faults in the 10kV distribution network caused by natural factors,operational factors,human factors,and equipment factors.It elucidates the various hazards resulting from distribution network faults and proposes corresponding preventive measures for different types of faults in the 10kV distribution network.The aim is to mitigate or reduce the impact of distribution network faults,ensuring the safe and stable operation of the distribution system.
文摘In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.
文摘Fault location and distance protection are essential smart grid technologies ensuring reliability of the power system. This paper describes an accurate algorithm for locating faults on double-circuit transmission lines. The proposed approach is capable of identifying the faulted circuit of a parallel transmission line by checking the estimated fault location and fault resistance. Voltage and current measurements from only one of the terminals of the faulty line are used. No pre-fault data are required for the estimation. The lumped parameter line model considering shunt capacitance is utilized for the derivation of the algorithm. It’s assumed that line parameters are known and transmission lines are fully transposed. The method is applicable to all types of faults. It’s evinced by evaluation studies that the proposed algorithm can correctly determine the faulted circuit in most cases. For exceptional cases, the current waveforms during the fault can be used to help identify the faulted circuit. The proposed algorithm generates quite accurate fault location estimates, and may be suitable for distance relaying.
文摘An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutines,designated for locating faults on particular line sections,and additionally the procedure for selecting the valid subroutine.The subroutines are formulated with use of the generalized fault loop model and the distributed parameter line model is applied.Performed ATP-EMTP based evaluation has shown the validity of the derived fault location algorithm and its high accuracy.
文摘When single phase earth fault occurs in the arc suppression coil grounding system, the amplitude of the transient capacitance current is high and decays fast, but the attenuation of the transient inductance current is much slower. This paper analyses the DC component of fault branch, and has found it is much bigger than that of the normal branches in transient state. All the simulation results obtained from three compensation types, different fault time and different wave cycles show that the DC component of fault branch is much higher than that of those normal branches. These results verify the effectiveness of taking the DC component as the method of fault line selection in the arc suppression coil grounding system.
文摘Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occurred. Based on dictionary of Gabor atoms and matching pursuit algorithm, the method extracts the atomic components iteratively from the feature signals and translated them to damped sinusoidal components. Then we can obtain the parametrical and analytical representation of atomic components. The termination condition of decomposing iteration is determined by the threshold of the initial residual energy with the purpose of extract the features more effectively. Accordingly, the proposed method can extract the starting and ending moment of disturbances precisely as well as their magnitudes, frequencies and other features. The numerical examples demonstrate its effectiveness.
基金This work is supported by National Natural Science Foundation of China(51777173,51525702).
文摘High resistance fault poses an enormous challenge to the existing algorithms of fault detection and fault classification.In this paper,the standard deviation and accumulation method are employed to perform the fault detection and classification.It is primarily built in two stages.Firstly,the standard deviations for the measured current’s signals of the local and remote terminals is computed to extract the fault feature.Secondly,the cumulative approach is used to enlarge the fault feature to perform the high resistance fault.The proposed scheme is known as Standard Deviation Index(SDI),and it is obtained for the three phases and zero sequence.The proposed algorithm has been tested through different fault circumstances such as multiple faults locations,fault resistances,and fault inception time.Moreover,far-end faults with high-resistance,faults happened nearby the terminal,faults considering variable loading angle,sudden load change,different sampling frequency,bad signaling and a fault occurred in the presence of series compensation are also discussed.The results show that the proposed scheme performed remarkably well regarding the fault with resistance up to 1.5kΩand can be detected within a millisecond after the fault inception.Additionally,the computational simplicity that characterizes the processes makes it more efficient and suitable for domain applications.