Content addressable memory (CAM) is widely used and its tests mostly use functional fault models. However, functional fault models cannot describe some physical faults exactly. This paper introduces physical fault m...Content addressable memory (CAM) is widely used and its tests mostly use functional fault models. However, functional fault models cannot describe some physical faults exactly. This paper introduces physical fault models for write-only CAM. Two test algorithms which can cover 100% targeted physical faults are also proposed. The algorithm for a CAM module with N-bit match output signal needs only 2N+2L+4 comparison operations and 5N writing operations, where N is the number of words and L is the word length. The algorithm for a HIT-signal-only CAM module uses 2N+2L+5 comparison operations and 8N writing operations. Compared to previous work, the proposed algorithms can test more physical faults with a few more operations. An experiment on a test chip shows the effectiveness and efficiency of the proposed physical fault models and algorithms.展开更多
Fault attributes generally display a consistent power–law-scaling relationship.Based on new 3 D seismic data,however,we found some exceptional fault attribute relationships of lengths(L)–throw(T)(vertical component ...Fault attributes generally display a consistent power–law-scaling relationship.Based on new 3 D seismic data,however,we found some exceptional fault attribute relationships of lengths(L)–throw(T)(vertical component of displacement),overlap zone length(Lo)–width(Wo)from a strike-slip fault system of the Ordovician carbonates in the Tarim Basin.The L–T relationship shows two linear segments with breakup at^40 km in fault length.This presents an exceptional throw increase in the second stage,which is attributed to a localization of vertical displacement and deformation in overlapping zones other than the different fault scales in a mature fault zone.The Lo–Wo relationship in the overlapping zones shows multiply stepped-shape patterns,suggesting multiple fault differential growth and periodic increase in fault size.Therefore,we propose a new alternative growth model of fault attributes in strike-slip fault zones,in which the overlapping zones accumulated localized displacement and deformation in the intracratonic strike-slip fault zone.展开更多
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on sys...For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.展开更多
This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The...This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The precursory information of fault slip during the underground mining activities is studied as well. Based on the physical modeling, the optimization of roadway support design and the field verification in fault-influenced zone are conducted. Physical modeling results show that, due to the combined effect of mining activities and fault slip, the mining-induced pressure and the extent of damaged rock masses in the fault-influenced zone are greater than those in the uninfluenced zone. The sharp increase and the succeeding stabilization of stress or steady increase in displacement can be identified as the precursory information of fault slip. Considering the larger mining-induced pressure in the fault-influenced zone, the new support design utilizing cables is proposed. The optimization of roadway support design suggests that the cables can be anchored in the stable surrounding rocks and can effectively mobilize the load bearing capacity of the stable surrounding rocks. The field observation indicates that the roadway is in good condition with the optimized roadway support design.展开更多
On August 8,2017,an M_(W)6.5 earthquake occurred in Jiuzhaigou County,Sichuan Province,China,on the eastern margin of the Qinghai-Tibet Plateau.This study investigates the coseismic deformation field and fault model w...On August 8,2017,an M_(W)6.5 earthquake occurred in Jiuzhaigou County,Sichuan Province,China,on the eastern margin of the Qinghai-Tibet Plateau.This study investigates the coseismic deformation field and fault model with ascending and descending Sentinel-1 synthetic aperture radar(SAR)images,aftershock distribution,and elastic half-space dislocation model.The regional fault slip pattern is then quantita-tively examined using the boundary element method.The results show that the ascending and descending interferometric synthetic aperture radar(InSAR)coseismic deformation fields display an overall NNW-SSE trend,with more significant deformation on the southwest side of the fault.The coseismic fault geometry is divided into NW and SE sub-faults with strikes of 162.1°and 149.3°,respectively.The coseismic fault slip is dominated by a left-lateral strike-slip movement with an average rake of-2.31°,mainly occurring at a depth of 0-13.04 km with a shape of an approximately inverted triangle.The fault slip features two peak slip zones,with a maximum of 1.39 m.The total seismic moment is 6.34×10^(18) N·m(M_(W)6.47).The boundary element calculation quantitatively indicates that the regional fault slip pattern may be mainly attributable to the changing strike and dip.The strike changes from NNWeSSE to nearly NS direction,and the dip gradually decreases from the Jiuzhaigou earthquake fault in the north to the Huya fault in the south.With these characteristics,the Huya and the Jiuzhaigou earthquake faults form the eastern boundary of the Minshan uplift zone and accommodate the accumulated deformation.展开更多
A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the...A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the AMPPCA algorithm first estimates a statistical description for each operating mode by applying mixture probabilistic principal component analysis(MPPCA). As a comparison, the combined MPPCA is employed where monitoring results are softly integrated according to posterior probabilities of the test sample in each local model. For exploiting the cross-mode correlations, which may be useful but are inadvertently neglected due to separately held monitoring approaches, a global monitoring model is constructed by aligning all local models together. In this way, both within-mode and cross-mode correlations are preserved in this integrated space. Finally, the utility and feasibility of AMPPCA are demonstrated through a non-isothermal continuous stirred tank reactor and the TE benchmark process.展开更多
Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measur...Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples.展开更多
Multifractal modeling is a mathematical method for the separation of a high potential mineralized background from a non-mineralized background. The Concentration-Distance to Fault structures(C-DF) fractal model and th...Multifractal modeling is a mathematical method for the separation of a high potential mineralized background from a non-mineralized background. The Concentration-Distance to Fault structures(C-DF) fractal model and the distribution of the known iron(Fe) deposits/mines seen in the Esfordi and Behabad 1:100,000 sheets from the Bafq region of central Iran are used to distinguish Fe mineralization based on their distance to magnetic basement structures and surface faults, separately, using airborne geophysical data and field surveys. Application of the C-DF fractal model for the classification of Fe mineralizations in the Esfordi and Behabad areas reveals that the main ones show a correlation with their distance from magnetic basement structures. Accordingly, the distances of Fe mineralizations with grades of Fe higher than 55%(43% < Fe ≤ 60%) are located at a distance of less than 1 km, whereas for surfacial faults with grades of 43% ≤ Fe ≤ 60%, the distances are 3162< DF ≤ 4365 m from the faults. Thus, there is a positive relationship between Fe mineralization and magnetic basement structures. Also, the proximity evidence of Precambrian high-grade Fe mineralization related to magnetic basement structures indicates syn-rifting tectonic events. Finally, this C-DF fractal model can be used for exploration of magmatic and hydrothermal ore deposits.展开更多
A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tes...A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tested by the experimental data that collected from Bently rotor experiment system. The results show that this methodology is very effective to extract the feature of vibration signals in the rotor speed-up course and can be extended to other non-stationary signal analysis fields in the future.展开更多
A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault inje...A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault injection model to trigger security exceptions.The testing process could be recorded by the monitoring mechanism of the strategy,and the monitoring information was written into the security log.The component vulnerabilities could be detected by the detecting algorithm through analyzing the security log.Lastly,some experiments were done in an integration testing platform to verify the applicability of the strategy.The experimental results show that the strategy is effective and operable.The detecting rate is more than 90%for vulnerability components.展开更多
A software fault injection system SFIS is designed,which consists of the target system plus a fault injector,fault library,workload,data collector,and data analyzer. A serial communication mechanism is adopted to simu...A software fault injection system SFIS is designed,which consists of the target system plus a fault injector,fault library,workload,data collector,and data analyzer. A serial communication mechanism is adopted to simulate the factual work environment. Then a fault model is built for single particle event,which can be denoted as FM=(FL,FT). FL stands for fault location,and FT stands for fault type. The fault model supports three temporal faults: transient,intermittent,and permanent. During the experiments implemented by SFIS,the software interruption method is adopted to inject transient faults,and step trace method is adopted to inject permanent faults into the target system. The experiment results indicate that for the injected transient code segment faults,2.8 % of them do not affect the program output,80.1% of them are detected by the built-in error detection in the system,and 17.1% of them are not detected by fault detection mechanism. The experiment results verify the validity of the fault injection method.展开更多
In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material caus...In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material causes iustable yarn formation, the investigation focuses on the fault characteristic existing in the dynamic tension. Analyzing the dynamic spinning system, the phenomenon of over random shock in a spinning triangle is discovered to be the main physical event prior to yarn end breakage. The fault characteristic is further confirmed by dynamic tests and signal processing, and can be used to make an approach to predicting yarn end breakage. A relative energy feature is defined for evaluating the tendency of yarn end breakage, and its effectiveness is verified by on.line monitoring tests in the laboratory. The research results show that the proposed dynamic fault model has not only an advantage in indicating the presence of fault characteristics, but also great potentials in quantitating fault in online spinning monitoring.展开更多
In the modern analogue design, Transistor Level Fault Simulation (TLFS) plays the im-portant part since every fault in the whole circuit has to be simulated at that level. Unfortunately, it is a very CPU intensive tas...In the modern analogue design, Transistor Level Fault Simulation (TLFS) plays the im-portant part since every fault in the whole circuit has to be simulated at that level. Unfortunately, it is a very CPU intensive task even though it maintains the high accuracy. Therefore, High Level Fault Modeling (HLFM) and High Level Fault Simulation (HLFS) are required in order to alleviate the efforts of simulation. In this paper, different HLFM approaches are reviewed at the device level during last two decades. We clarify their domains of application and evaluate their strengths and current limitations. We also analyze causes of faults and introduce various test approaches.展开更多
Fault analysis is a frequently used side-channel attack for cryptanalysis.However,existing fault attack methods usually involve complex fault fusion analysis or computation-intensive statistical analysis of massive fa...Fault analysis is a frequently used side-channel attack for cryptanalysis.However,existing fault attack methods usually involve complex fault fusion analysis or computation-intensive statistical analysis of massive fault traces.In this work,we take a property-based formal verification approach to fault analysis.We derive fine-grained formal models for automatic fault propagation and fusion,which establish a mathematical foundation for precise measurement and formal reasoning of fault effects.We extract the correlations in fault effects in order to create properties for fault verification.We further propose a method for key recovery,by formally checking when the extracted properties can be satisfied with partial keys as the search variables.Experimental results using both unprotected and masked advanced encryption standard(AES)implementations show that our method has a key search complexity of 216,which only requires two correct and faulty ciphertext pairs to determine the secret key,and does not assume knowledge about fault location or pattern.展开更多
The Wenchuan Ms8.0 earthquake and the Lushan M7.0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the We...The Wenchuan Ms8.0 earthquake and the Lushan M7.0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the Wenchuan Ms8.0 earthquake, we calculated the coulomb failure stress change. The inverted coulomb stress changes based on the Nishimura and Chenji models both show that the Lushan MT. 0 earth- quake occurred in the increased area of coulomb failure stress induced by the Wenchuan Ms8. 0 earthquake. The coulomb failure stress increased by approximately 0. 135 - 0. 152 bar in the source of the Lushan M7.0 earthquake, which is far more than the stress triggering threshold. Therefore, the Lushan M7.0 earthquake was most likely triggered by the coulomb failure stress change.展开更多
Based on dislocation theory of 0kada, we adopted a finite-element fault model inverted by Gavin Hayes from seismic data for the 2011 Japan Mw9.0 earthquake, and obtained the corresponding surface displacement and stra...Based on dislocation theory of 0kada, we adopted a finite-element fault model inverted by Gavin Hayes from seismic data for the 2011 Japan Mw9.0 earthquake, and obtained the corresponding surface displacement and strain fields. The calculated displacement field is consistent with the observed GPS results in the trend of changes. Also the surface displacement and strain fields both show large variations in space.展开更多
The 2016 A/w7.8 Kaikoura(New Zealand)earthquake was the most complex event ever instrumentally recorded and geologically investigated,as it ruptured on more than 12 fault segments of various geometries.To study the ma...The 2016 A/w7.8 Kaikoura(New Zealand)earthquake was the most complex event ever instrumentally recorded and geologically investigated,as it ruptured on more than 12 fault segments of various geometries.To study the mainshock rupture characteristics,geodetic methods like InSAR and GPS play an essential role in providing satisfactory spatial resolution.However,early strong aftershocks may cause extra ground deformation which bias the mainshock rupture inversion result.In this paper,we will focus on studying the Mw 6.3 aftershock,which is the only A/6+thrust slip aftershock that occurred only 30 minutes after the Kaikoura mainshock.We will relocate the hypocenter of this event using the hypo 2000 method,make the finite fault model(FFM)inversion for the detailed rupture processes and calculate the synthetic surface displacement to compare with the observed GPS data and figure out its influence on the mainshock study.Although we are not able to resolve the real ruptured fault of this event because of limited observation data,we infer that it is a west-ward dipping event of oblique slip mechanism,consistent with the subfault geometries of the Kaikoura mainshock.According to the inverted FFM,this event can generate 10-20 cm ground surface displacement and affect the ground displacement observation at nearby GPS stations.展开更多
The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In th...The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...展开更多
On the basis of complex network theory, the issues of key nodes in Wireless Sensor Networks (WSN) are discussed. A model expression of sub-network fault in WSN is given at first; subsequently, the concepts of average ...On the basis of complex network theory, the issues of key nodes in Wireless Sensor Networks (WSN) are discussed. A model expression of sub-network fault in WSN is given at first; subsequently, the concepts of average path length and clustering coefficient are introduced. Based on the two concepts, a novel attribute description of key nodes related to sub-networks is proposed. Moreover, in terms of node deployment density and transmission range, the concept of single-point key nodes and generalized key nodes of WSN are defined, and their decision theorems are investigated.展开更多
The 2018 M_(W)6.7 Iburi earthquake shocked the eastern Iburi region to the west of the Hidaka Collision Zone in Hokkaido,which is a destructive inland earthquake.We resolved the kinematic rupture process of the event ...The 2018 M_(W)6.7 Iburi earthquake shocked the eastern Iburi region to the west of the Hidaka Collision Zone in Hokkaido,which is a destructive inland earthquake.We resolved the kinematic rupture process of the event by combining strong motions(SM)and synthetic aperture radar(SAR)images in a joint inversion.The results reveal that the duration of the whole rupture is about 17s,yielding a total seismic moment of 1.4×10^(19)N·m(M_(W)=6.7).The main slip area is located at a depth of approximately 24 km with a peak slip of~0.8m above the hypocenter.The comparison with the regional velocity model shows the earthquake was initiated in the upper mantle,while the majority of slips are located in the lower crust,which is an“aseismic”domain in the typical sandwich model.The location of the major slip area is consistent with a high-conductivity volume.We proposed a mechanism of low frictional property(<0.3)produced by high pore pressure to explain the abnormal high dip angle and centroid depth located in the ductile lower-crust.Aftershocks are distributed in areas where the Coulomb frictional stress increases due to co-seismic displacement with a mechanism conjugating to the mainshock.展开更多
基金supported by the National Natural Science Foundation of China (No.60603049)the National High Technology Research and Development Program of China (Nos.2008AA110901,2007AA01Z112,2009AA01Z125)+1 种基金the State Key Development Program for Basic Research of China (No.2005CB321600)the Beijing Natural Science Foundation (No.4072024)
文摘Content addressable memory (CAM) is widely used and its tests mostly use functional fault models. However, functional fault models cannot describe some physical faults exactly. This paper introduces physical fault models for write-only CAM. Two test algorithms which can cover 100% targeted physical faults are also proposed. The algorithm for a CAM module with N-bit match output signal needs only 2N+2L+4 comparison operations and 5N writing operations, where N is the number of words and L is the word length. The algorithm for a HIT-signal-only CAM module uses 2N+2L+5 comparison operations and 8N writing operations. Compared to previous work, the proposed algorithms can test more physical faults with a few more operations. An experiment on a test chip shows the effectiveness and efficiency of the proposed physical fault models and algorithms.
基金partly supported by the National Natural Science Foundation of China(Grant No.91955204)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX010300)。
文摘Fault attributes generally display a consistent power–law-scaling relationship.Based on new 3 D seismic data,however,we found some exceptional fault attribute relationships of lengths(L)–throw(T)(vertical component of displacement),overlap zone length(Lo)–width(Wo)from a strike-slip fault system of the Ordovician carbonates in the Tarim Basin.The L–T relationship shows two linear segments with breakup at^40 km in fault length.This presents an exceptional throw increase in the second stage,which is attributed to a localization of vertical displacement and deformation in overlapping zones other than the different fault scales in a mature fault zone.The Lo–Wo relationship in the overlapping zones shows multiply stepped-shape patterns,suggesting multiple fault differential growth and periodic increase in fault size.Therefore,we propose a new alternative growth model of fault attributes in strike-slip fault zones,in which the overlapping zones accumulated localized displacement and deformation in the intracratonic strike-slip fault zone.
基金supported by the National Natural Science Foundation of China(61273070,61203092)the Enterprise-college-institute Cooperative Project of Jiangsu Province(BY2015019-21)+1 种基金111 Project(B12018)the Fun-damental Research Funds for the Central Universities(JUSRP51733B)
文摘For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.
基金financially supported by the National Natural Science Foundation of China(No.41502184)Beijing Natural Science Foundation(No.2164067)+2 种基金National Key Research and Development Program(No.2016YFC0801401)Fundamental Research Funds for the Central Universities(No.2014QL01)Innovation Training Programs for Undergraduate Students(Nos.201411413054 and SKLCRSM14CXJH08)
文摘This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The precursory information of fault slip during the underground mining activities is studied as well. Based on the physical modeling, the optimization of roadway support design and the field verification in fault-influenced zone are conducted. Physical modeling results show that, due to the combined effect of mining activities and fault slip, the mining-induced pressure and the extent of damaged rock masses in the fault-influenced zone are greater than those in the uninfluenced zone. The sharp increase and the succeeding stabilization of stress or steady increase in displacement can be identified as the precursory information of fault slip. Considering the larger mining-induced pressure in the fault-influenced zone, the new support design utilizing cables is proposed. The optimization of roadway support design suggests that the cables can be anchored in the stable surrounding rocks and can effectively mobilize the load bearing capacity of the stable surrounding rocks. The field observation indicates that the roadway is in good condition with the optimized roadway support design.
基金This work was supported by the National Key Research and Development Program of China(2018YFC1503603,2016YFB0501405)the National Natural Science Foundation of China(41874011,41774011)。
文摘On August 8,2017,an M_(W)6.5 earthquake occurred in Jiuzhaigou County,Sichuan Province,China,on the eastern margin of the Qinghai-Tibet Plateau.This study investigates the coseismic deformation field and fault model with ascending and descending Sentinel-1 synthetic aperture radar(SAR)images,aftershock distribution,and elastic half-space dislocation model.The regional fault slip pattern is then quantita-tively examined using the boundary element method.The results show that the ascending and descending interferometric synthetic aperture radar(InSAR)coseismic deformation fields display an overall NNW-SSE trend,with more significant deformation on the southwest side of the fault.The coseismic fault geometry is divided into NW and SE sub-faults with strikes of 162.1°and 149.3°,respectively.The coseismic fault slip is dominated by a left-lateral strike-slip movement with an average rake of-2.31°,mainly occurring at a depth of 0-13.04 km with a shape of an approximately inverted triangle.The fault slip features two peak slip zones,with a maximum of 1.39 m.The total seismic moment is 6.34×10^(18) N·m(M_(W)6.47).The boundary element calculation quantitatively indicates that the regional fault slip pattern may be mainly attributable to the changing strike and dip.The strike changes from NNWeSSE to nearly NS direction,and the dip gradually decreases from the Jiuzhaigou earthquake fault in the north to the Huya fault in the south.With these characteristics,the Huya and the Jiuzhaigou earthquake faults form the eastern boundary of the Minshan uplift zone and accommodate the accumulated deformation.
基金Supported by the National Natural Science Foundation of China(61374140)Shanghai Pujiang Program(12PJ1402200)
文摘A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the AMPPCA algorithm first estimates a statistical description for each operating mode by applying mixture probabilistic principal component analysis(MPPCA). As a comparison, the combined MPPCA is employed where monitoring results are softly integrated according to posterior probabilities of the test sample in each local model. For exploiting the cross-mode correlations, which may be useful but are inadvertently neglected due to separately held monitoring approaches, a global monitoring model is constructed by aligning all local models together. In this way, both within-mode and cross-mode correlations are preserved in this integrated space. Finally, the utility and feasibility of AMPPCA are demonstrated through a non-isothermal continuous stirred tank reactor and the TE benchmark process.
基金This project is supported by National Natural Science Foundation of China(No.50375153).
文摘Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples.
文摘Multifractal modeling is a mathematical method for the separation of a high potential mineralized background from a non-mineralized background. The Concentration-Distance to Fault structures(C-DF) fractal model and the distribution of the known iron(Fe) deposits/mines seen in the Esfordi and Behabad 1:100,000 sheets from the Bafq region of central Iran are used to distinguish Fe mineralization based on their distance to magnetic basement structures and surface faults, separately, using airborne geophysical data and field surveys. Application of the C-DF fractal model for the classification of Fe mineralizations in the Esfordi and Behabad areas reveals that the main ones show a correlation with their distance from magnetic basement structures. Accordingly, the distances of Fe mineralizations with grades of Fe higher than 55%(43% < Fe ≤ 60%) are located at a distance of less than 1 km, whereas for surfacial faults with grades of 43% ≤ Fe ≤ 60%, the distances are 3162< DF ≤ 4365 m from the faults. Thus, there is a positive relationship between Fe mineralization and magnetic basement structures. Also, the proximity evidence of Precambrian high-grade Fe mineralization related to magnetic basement structures indicates syn-rifting tectonic events. Finally, this C-DF fractal model can be used for exploration of magmatic and hydrothermal ore deposits.
基金This project is supported by National Natural Science Foundation of China(No.50075079).
文摘A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tested by the experimental data that collected from Bently rotor experiment system. The results show that this methodology is very effective to extract the feature of vibration signals in the rotor speed-up course and can be extended to other non-stationary signal analysis fields in the future.
基金Project(513150601)supported by the National Pre-Research Project Foundation of China
文摘A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault injection model to trigger security exceptions.The testing process could be recorded by the monitoring mechanism of the strategy,and the monitoring information was written into the security log.The component vulnerabilities could be detected by the detecting algorithm through analyzing the security log.Lastly,some experiments were done in an integration testing platform to verify the applicability of the strategy.The experimental results show that the strategy is effective and operable.The detecting rate is more than 90%for vulnerability components.
基金National Defense Scientific Work Committee Foundation of China (Grant No.16.6.2.7).
文摘A software fault injection system SFIS is designed,which consists of the target system plus a fault injector,fault library,workload,data collector,and data analyzer. A serial communication mechanism is adopted to simulate the factual work environment. Then a fault model is built for single particle event,which can be denoted as FM=(FL,FT). FL stands for fault location,and FT stands for fault type. The fault model supports three temporal faults: transient,intermittent,and permanent. During the experiments implemented by SFIS,the software interruption method is adopted to inject transient faults,and step trace method is adopted to inject permanent faults into the target system. The experiment results indicate that for the injected transient code segment faults,2.8 % of them do not affect the program output,80.1% of them are detected by the built-in error detection in the system,and 17.1% of them are not detected by fault detection mechanism. The experiment results verify the validity of the fault injection method.
文摘In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material causes iustable yarn formation, the investigation focuses on the fault characteristic existing in the dynamic tension. Analyzing the dynamic spinning system, the phenomenon of over random shock in a spinning triangle is discovered to be the main physical event prior to yarn end breakage. The fault characteristic is further confirmed by dynamic tests and signal processing, and can be used to make an approach to predicting yarn end breakage. A relative energy feature is defined for evaluating the tendency of yarn end breakage, and its effectiveness is verified by on.line monitoring tests in the laboratory. The research results show that the proposed dynamic fault model has not only an advantage in indicating the presence of fault characteristics, but also great potentials in quantitating fault in online spinning monitoring.
基金Supported by the Fundamental Research Grand Scheme(Ref: frgs 2/2010/TK/UTP/0318, Ministry of High Education (MOHE)MalaysiaShort Tem Internal Research Fund (STIRF No. 20/10.11)) provided by Research Enterprise Office, Universiti Teknologi Petronas, Malaysia in 2010-2012
文摘In the modern analogue design, Transistor Level Fault Simulation (TLFS) plays the im-portant part since every fault in the whole circuit has to be simulated at that level. Unfortunately, it is a very CPU intensive task even though it maintains the high accuracy. Therefore, High Level Fault Modeling (HLFM) and High Level Fault Simulation (HLFS) are required in order to alleviate the efforts of simulation. In this paper, different HLFM approaches are reviewed at the device level during last two decades. We clarify their domains of application and evaluate their strengths and current limitations. We also analyze causes of faults and introduce various test approaches.
基金supported by the National Key R&D Program of China(No.2021YFB3100901)the National Natural Science Foundation of China(Nos.62074131 and 62004176).
文摘Fault analysis is a frequently used side-channel attack for cryptanalysis.However,existing fault attack methods usually involve complex fault fusion analysis or computation-intensive statistical analysis of massive fault traces.In this work,we take a property-based formal verification approach to fault analysis.We derive fine-grained formal models for automatic fault propagation and fusion,which establish a mathematical foundation for precise measurement and formal reasoning of fault effects.We extract the correlations in fault effects in order to create properties for fault verification.We further propose a method for key recovery,by formally checking when the extracted properties can be satisfied with partial keys as the search variables.Experimental results using both unprotected and masked advanced encryption standard(AES)implementations show that our method has a key search complexity of 216,which only requires two correct and faulty ciphertext pairs to determine the secret key,and does not assume knowledge about fault location or pattern.
基金supported by the Director Foundation of Institute of SeismologyChina Earthquake Administration(201056088)
文摘The Wenchuan Ms8.0 earthquake and the Lushan M7.0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the Wenchuan Ms8.0 earthquake, we calculated the coulomb failure stress change. The inverted coulomb stress changes based on the Nishimura and Chenji models both show that the Lushan MT. 0 earth- quake occurred in the increased area of coulomb failure stress induced by the Wenchuan Ms8. 0 earthquake. The coulomb failure stress increased by approximately 0. 135 - 0. 152 bar in the source of the Lushan M7.0 earthquake, which is far more than the stress triggering threshold. Therefore, the Lushan M7.0 earthquake was most likely triggered by the coulomb failure stress change.
基金supported by the Director Foundation of Institute of Seismology,CEA( IS201056088)
文摘Based on dislocation theory of 0kada, we adopted a finite-element fault model inverted by Gavin Hayes from seismic data for the 2011 Japan Mw9.0 earthquake, and obtained the corresponding surface displacement and strain fields. The calculated displacement field is consistent with the observed GPS results in the trend of changes. Also the surface displacement and strain fields both show large variations in space.
基金the New Zealand GeoNet (http://geonet.org. nz) projectfinancially supported by National Natural Science Foundation of China (Nos. 41590854 and 41461164003)
文摘The 2016 A/w7.8 Kaikoura(New Zealand)earthquake was the most complex event ever instrumentally recorded and geologically investigated,as it ruptured on more than 12 fault segments of various geometries.To study the mainshock rupture characteristics,geodetic methods like InSAR and GPS play an essential role in providing satisfactory spatial resolution.However,early strong aftershocks may cause extra ground deformation which bias the mainshock rupture inversion result.In this paper,we will focus on studying the Mw 6.3 aftershock,which is the only A/6+thrust slip aftershock that occurred only 30 minutes after the Kaikoura mainshock.We will relocate the hypocenter of this event using the hypo 2000 method,make the finite fault model(FFM)inversion for the detailed rupture processes and calculate the synthetic surface displacement to compare with the observed GPS data and figure out its influence on the mainshock study.Although we are not able to resolve the real ruptured fault of this event because of limited observation data,we infer that it is a west-ward dipping event of oblique slip mechanism,consistent with the subfault geometries of the Kaikoura mainshock.According to the inverted FFM,this event can generate 10-20 cm ground surface displacement and affect the ground displacement observation at nearby GPS stations.
基金Supported by National Natural Science Foundation of China (No. 50778058 and No. 90715038)National Key Technology Research and Development Program of China (No. 2006BAC13B02)Major State Basic Research Development Program of China ("973" Program, No. 2008CB425802)
文摘The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...
基金Supported by the National High Technology Research and Development Program of China(No.2008AA01A201)the National Natural Science Foundation of China(No.60503015)
文摘On the basis of complex network theory, the issues of key nodes in Wireless Sensor Networks (WSN) are discussed. A model expression of sub-network fault in WSN is given at first; subsequently, the concepts of average path length and clustering coefficient are introduced. Based on the two concepts, a novel attribute description of key nodes related to sub-networks is proposed. Moreover, in terms of node deployment density and transmission range, the concept of single-point key nodes and generalized key nodes of WSN are defined, and their decision theorems are investigated.
基金This work is supported by the National Key R&D Program of China(No.2018YFC1504203)the National Natural Science Foundation of China(No.42021003).
文摘The 2018 M_(W)6.7 Iburi earthquake shocked the eastern Iburi region to the west of the Hidaka Collision Zone in Hokkaido,which is a destructive inland earthquake.We resolved the kinematic rupture process of the event by combining strong motions(SM)and synthetic aperture radar(SAR)images in a joint inversion.The results reveal that the duration of the whole rupture is about 17s,yielding a total seismic moment of 1.4×10^(19)N·m(M_(W)=6.7).The main slip area is located at a depth of approximately 24 km with a peak slip of~0.8m above the hypocenter.The comparison with the regional velocity model shows the earthquake was initiated in the upper mantle,while the majority of slips are located in the lower crust,which is an“aseismic”domain in the typical sandwich model.The location of the major slip area is consistent with a high-conductivity volume.We proposed a mechanism of low frictional property(<0.3)produced by high pore pressure to explain the abnormal high dip angle and centroid depth located in the ductile lower-crust.Aftershocks are distributed in areas where the Coulomb frictional stress increases due to co-seismic displacement with a mechanism conjugating to the mainshock.