In this paper,a novel remaining useful life prediction approach considering fault effects is proposed.The Wiener process is used to construct the degradation process of single performance characteristic with the fault...In this paper,a novel remaining useful life prediction approach considering fault effects is proposed.The Wiener process is used to construct the degradation process of single performance characteristic with the fault effects.The first passage time based remaining useful life distribution is calculated by assuming fault occurrence moment is a random variable and follows a certain distribution.Expectation maximization algorithm is employed to estimate model parameters,where the fault occurrence moment is considered as a missing data.Finally,a Copula function is used to describe the dependence between the multiple performance characteristics and derive joint remaining useful life(RUL)distribution of product with the fault effects.The effectiveness of the proposed approach is verified by the experiments of turbofan engines.展开更多
基金supported by General Program of National Natural Science Foundation of China(61773080)China Central Universities Foundation(2019CDYGZD001)+1 种基金Scientific Reserve Talent Programs of Chongqing University(cqu2018CDHB1B04)Graduate Research and Innovation Foundation of Chongqing(CYB20065)。
文摘In this paper,a novel remaining useful life prediction approach considering fault effects is proposed.The Wiener process is used to construct the degradation process of single performance characteristic with the fault effects.The first passage time based remaining useful life distribution is calculated by assuming fault occurrence moment is a random variable and follows a certain distribution.Expectation maximization algorithm is employed to estimate model parameters,where the fault occurrence moment is considered as a missing data.Finally,a Copula function is used to describe the dependence between the multiple performance characteristics and derive joint remaining useful life(RUL)distribution of product with the fault effects.The effectiveness of the proposed approach is verified by the experiments of turbofan engines.