The data of the strike-slip offset along the Xiaojiang active fault can be obviously grouped.The groups of small orders of magnitude data within 100 m show clear linear characteristics of increments between 8 m and 12...The data of the strike-slip offset along the Xiaojiang active fault can be obviously grouped.The groups of small orders of magnitude data within 100 m show clear linear characteristics of increments between 8 m and 12 m,which indicates that the segments of the Xiaojiang active fault is of characteristic seismicity and the distribution of the values of each group indicates that there are smaller earthquakes and creep between two large earthquakes along each segment of the Xiaojiang active fault.The interval between two characteristic large earthquakes can be calculated with the increments for two groups of slip data and the slip rate of the fault.Furthermore,the frequency of smaller earthquakes can also be estimated by comparing the distributions of the displacements of the large earthquakes with the distributions of the values of each group of data.The groups of large slip displacements show that there is close relationship between the records of the displacements of the fault and the changes of the展开更多
The Late Quaternary slip rate along the Maqu segment of the eastern Kunlun Fault was estimated using a combination of high-resolution remote sensing imagery interpretation, field observations and differential Global P...The Late Quaternary slip rate along the Maqu segment of the eastern Kunlun Fault was estimated using a combination of high-resolution remote sensing imagery interpretation, field observations and differential Global Positioning System(GPS) measurements of offset river terraces, and 14 C dating of snail shells collected from offset risers. The results show that the left-slip rate along the segment is 3–5 mm/a, and that the vertical slip rate is 0.3–0.5 mm/a. Both the horizontal and vertical slips on the segment remain consistent over a distance of ~100 km. It means that no slip gradient as previously suggested occurred along the Maqu segment, and which thus might behave as an independent seismogenic fault. Judging from multiple relationships among young terrace offsets, we infer that co-seismic surface rupture produced by a characteristic earthquake with a magnitude of Ms7.0–7.5 on the Maqu fault could generate a horizontal slip of 4.5–5 m and a vertical slip of 0.45–0.5 m, with a corresponding ratio(Dh/Dv) of about 9. Two surface rupture events must have occurred over the past 3300 years, the latest one possibly between 1485 cal BP and 1730 cal BP.展开更多
The paper introduces the steps and methods of multi-approach, multi-level exploration of buried faults in thick Quaternary sediment regions by taking the test exploration of the Yinchuan active fault as example. Based...The paper introduces the steps and methods of multi-approach, multi-level exploration of buried faults in thick Quaternary sediment regions by taking the test exploration of the Yinchuan active fault as example. Based on the comprehensive analyses of previous data, we choose the Xinqushao Village of Xingqing District of Yinchuan City as the test site for the comprehensive exploration. Firstly, we adopted shallow seismic investigation with group intervals of 10m, 5m and lm to gradually trace layer by layer the master fault of the Yinchuan buried fault from a deep depth to a shallow depth where drilling could be used. Then, with composite geological profile drilling, we determined the precise location and dip angle of the fault. The drilling show the buried depth of the upper offset point is 8.3m. Finally, large-scale trenching revealed that the actual buried depth of the upper offset point of the fault is 1.5m from the ground surface and there are paleoearthquake events of 5 stages. Combined with the preliminary result of corresponding sample age, we conclude the Yinchuan buried fault is a mid to late Holocene active fault.展开更多
The easternmost Tian Shan lies in eastern Xinjiang, Central Asia. The South Barkol basin fault(SBF) in the northern part of the easternmost Tian Shan is a major tectonic structure in this orogenic region. The late Q...The easternmost Tian Shan lies in eastern Xinjiang, Central Asia. The South Barkol basin fault(SBF) in the northern part of the easternmost Tian Shan is a major tectonic structure in this orogenic region. The late Quaternary activity, paleoseismology, and deformation characteristics of the fault provide important clues for understanding the tectonic process of the eastern Tian Shan orogen and implementing seismic mitigation. Through interpretation of high-resolution satellite images, unmanned aerial vehicle measurements, and detailed geological and geomorphic investigations, we suggest that the fault exhibits clear left-lateral slip along its western segment. Paleoseismic trenches dug near Xiongkuer reveal evidence of six large paleoearthquakes. The four latest paleoearthquakes were dated: the oldest event occurred at 4663 BC–3839 BC. Data on the horizontal offsets along the probable 1842 Barkol earthquake coseismic rupture suggest clear multiple relationships between cumulative offsets and possible ~4 m of coseismic left-lateral slip per event. From the cumulative offsets and 14 C sample ages, we suggest an average Holocene left-lateral slip rate of 2.4–2.8 mm/a on the SBF, accounting for ~80% of lateral deformation within the entire eastern Tian Shan fault system. This result is comparable with the shortening rate of 2–4 mm/a in the whole eastern Tian Shan, indicating an equal role of strike-slip tectonics and compressional tectonics in this orogen, and that the SBF may accommodate substantial lateral tectonic deformation.展开更多
Active tectonic morphometric studies of the sparsely investigated frontal Siwalik terrain around Goran in the Samba district bordering the Kathua district of J&K reveal the presence of NW-SE trending active sinist...Active tectonic morphometric studies of the sparsely investigated frontal Siwalik terrain around Goran in the Samba district bordering the Kathua district of J&K reveal the presence of NW-SE trending active sinistral strike-slip fault with oblique slip component which is parallel to the Surin-Masatgarh anticline. The Basantar River, the Tarnah stream, the Ujh River, the Sahaar stream and the Ravi River exhibit significant stream offsets where the fault crosses these channels. The values of the morphometric indices viz. stream sinuosity index (S), stream length gradient index (SL), valley floor width to valley height ratio (Vf), mountain front sinuosity index (Smf), hypsometric integral (Hi), basin asymmetry ratio (AF) and basin elongation ratio (Eb) calculated along the linear river offsets with respect to longitudinal River segments of the Rivers Basantar, Tarnah, Ujh, Sahaar and Ravi Rivers reveal that terrain is tectonically active and can be placed in tectonic active class I. The fault has an apparent offset of about 2000 m with it as it crosses the Basantar, the Tarnah, the Ujh, the Sahaar and the Ravi Rivers. The stream offsets upon field and laboratory investigations are developed due to an active sinistral strike slip fault which is being named as Goran fault. This fault has a surface expression of 100 km extending from the Basantar in the northwest up to the Beas River in the southwest whereas the remaining segment may exist as a hidden fault all along the Himalaya.展开更多
The ENE\|striking Altyn Tagh Fault (ATF) has been well known as a large, active left\|lateral strike\|slip fault that bounds the thrusting systems in NE Tibet.This fault has been the focal point in the debate between ...The ENE\|striking Altyn Tagh Fault (ATF) has been well known as a large, active left\|lateral strike\|slip fault that bounds the thrusting systems in NE Tibet.This fault has been the focal point in the debate between the discrete extrusion vs. distributed crustal shortening models. Although its active left\|lateralstrike\|slip features have been largely investigated and well documented by both satellite imagery and air\|photo interpretations and field observations, little study has been done upon its Cenozoic displacement history. Questions about the age of initiation and total offset accumulated on the fault remain controversial. A key area to resolve such question is located along the central segment of the fault in the Souerkuli and Mangar regions, where Neogene sedimentary basins well develop and are mostly distributed in three zones, namely from east to west: the Gobiling, Yitunbulak and Yusuale Tagh (Fig.1). Our field investigations were conducted along the ATF cutting the Yitunbulak and Gebiling Neogene sedimentary basins. Two stratigraphic unconformities observed within this Neogene conglomeratic series allow a separation of three major stratigraphic sequences and record the initiation and major deformational episodes of ATF during Cenozoic. An early stratigraphic unconformity occurred between a yellow depositional series below and early Pliocene red\|colored conglomeratic mudstones above. A later stratigraphic unconformities occurred between early and late Pliocene sedimentary series. The lower series below the early stratigraphic unconformities is mainly composed of a conglomeratic rocks containing cobbles and pebbles of basement rock units (mostly mylonitic granites, limestones and quartzes); this series has been poorly mapped and dated; its age could be assigned to late Oligocene to early Miocene; this series tilts to NW with an angle of about 30° and is overlain in angular unconformity by early Pliocene pebble\|sized conglomerates. A weathering zone on top of the lower conglomeratic series is clearly seen, that represents a long period of uplift and erosion. This lacuna occurred between early Miocene and early Pliocene in the west Qaidam basin, which has been documented only locally. Early Pliocene deposits correspond to alluvial to lacustrine facies rocks deposited in strike\|slip basin probably originated at releasing bend of the strike\|slip ATF; late Pliocene deposits is composed by fluviatile conglomerates and fanglomerates lying in unconformity on the upper Pliocene rocks. Early Quaternary deposits are absent along the ATF and have been well documented in the Qaidam basin. Late Quaternary fanglomerates infills active fault valleys.展开更多
针对换相失败影响因素分析已经取得一些成果,但故障清除时刻(故障分闸角)对换相失败的影响有待进一步研究。首先基于换相失败过程分析过零点偏移角对关断角的影响;其次基于换相电压时间面积法分析不同故障合闸角对逆变器首次换相失败的...针对换相失败影响因素分析已经取得一些成果,但故障清除时刻(故障分闸角)对换相失败的影响有待进一步研究。首先基于换相失败过程分析过零点偏移角对关断角的影响;其次基于换相电压时间面积法分析不同故障合闸角对逆变器首次换相失败的影响,并进一步分析故障分闸角及过零点偏移角对后续换相失败的影响,发现故障在换相过程中清除引发后续换相失败风险最大;最后以单相接地故障为例,基于PSCAD/EMTDC中的(conseil international des grands reseaux electriques,CIGRE)模型的不同故障合闸角与分闸角的仿真测试结果验证了理论分析的正确性。展开更多
基金This project was sponsored by the State Seismological Bureau (85-02-01-04)
文摘The data of the strike-slip offset along the Xiaojiang active fault can be obviously grouped.The groups of small orders of magnitude data within 100 m show clear linear characteristics of increments between 8 m and 12 m,which indicates that the segments of the Xiaojiang active fault is of characteristic seismicity and the distribution of the values of each group indicates that there are smaller earthquakes and creep between two large earthquakes along each segment of the Xiaojiang active fault.The interval between two characteristic large earthquakes can be calculated with the increments for two groups of slip data and the slip rate of the fault.Furthermore,the frequency of smaller earthquakes can also be estimated by comparing the distributions of the displacements of the large earthquakes with the distributions of the values of each group of data.The groups of large slip displacements show that there is close relationship between the records of the displacements of the fault and the changes of the
基金support of the Natural Science Foundation of China(41472178)the China Geological Survey projects(1212011120167,12120114002211)
文摘The Late Quaternary slip rate along the Maqu segment of the eastern Kunlun Fault was estimated using a combination of high-resolution remote sensing imagery interpretation, field observations and differential Global Positioning System(GPS) measurements of offset river terraces, and 14 C dating of snail shells collected from offset risers. The results show that the left-slip rate along the segment is 3–5 mm/a, and that the vertical slip rate is 0.3–0.5 mm/a. Both the horizontal and vertical slips on the segment remain consistent over a distance of ~100 km. It means that no slip gradient as previously suggested occurred along the Maqu segment, and which thus might behave as an independent seismogenic fault. Judging from multiple relationships among young terrace offsets, we infer that co-seismic surface rupture produced by a characteristic earthquake with a magnitude of Ms7.0–7.5 on the Maqu fault could generate a horizontal slip of 4.5–5 m and a vertical slip of 0.45–0.5 m, with a corresponding ratio(Dh/Dv) of about 9. Two surface rupture events must have occurred over the past 3300 years, the latest one possibly between 1485 cal BP and 1730 cal BP.
基金The research was jointly sponsored by the National Development and Reform Commission of China under the project of"Experimental Exploration of Active Fault in Urban Area"(20041138)by National Natural Science Foundation of China (40234040)
文摘The paper introduces the steps and methods of multi-approach, multi-level exploration of buried faults in thick Quaternary sediment regions by taking the test exploration of the Yinchuan active fault as example. Based on the comprehensive analyses of previous data, we choose the Xinqushao Village of Xingqing District of Yinchuan City as the test site for the comprehensive exploration. Firstly, we adopted shallow seismic investigation with group intervals of 10m, 5m and lm to gradually trace layer by layer the master fault of the Yinchuan buried fault from a deep depth to a shallow depth where drilling could be used. Then, with composite geological profile drilling, we determined the precise location and dip angle of the fault. The drilling show the buried depth of the upper offset point is 8.3m. Finally, large-scale trenching revealed that the actual buried depth of the upper offset point of the fault is 1.5m from the ground surface and there are paleoearthquake events of 5 stages. Combined with the preliminary result of corresponding sample age, we conclude the Yinchuan buried fault is a mid to late Holocene active fault.
基金funded by foundation of seismic risk assessment of active faults,China Earthquake Administration(Grant no.1521044025)
文摘The easternmost Tian Shan lies in eastern Xinjiang, Central Asia. The South Barkol basin fault(SBF) in the northern part of the easternmost Tian Shan is a major tectonic structure in this orogenic region. The late Quaternary activity, paleoseismology, and deformation characteristics of the fault provide important clues for understanding the tectonic process of the eastern Tian Shan orogen and implementing seismic mitigation. Through interpretation of high-resolution satellite images, unmanned aerial vehicle measurements, and detailed geological and geomorphic investigations, we suggest that the fault exhibits clear left-lateral slip along its western segment. Paleoseismic trenches dug near Xiongkuer reveal evidence of six large paleoearthquakes. The four latest paleoearthquakes were dated: the oldest event occurred at 4663 BC–3839 BC. Data on the horizontal offsets along the probable 1842 Barkol earthquake coseismic rupture suggest clear multiple relationships between cumulative offsets and possible ~4 m of coseismic left-lateral slip per event. From the cumulative offsets and 14 C sample ages, we suggest an average Holocene left-lateral slip rate of 2.4–2.8 mm/a on the SBF, accounting for ~80% of lateral deformation within the entire eastern Tian Shan fault system. This result is comparable with the shortening rate of 2–4 mm/a in the whole eastern Tian Shan, indicating an equal role of strike-slip tectonics and compressional tectonics in this orogen, and that the SBF may accommodate substantial lateral tectonic deformation.
文摘Active tectonic morphometric studies of the sparsely investigated frontal Siwalik terrain around Goran in the Samba district bordering the Kathua district of J&K reveal the presence of NW-SE trending active sinistral strike-slip fault with oblique slip component which is parallel to the Surin-Masatgarh anticline. The Basantar River, the Tarnah stream, the Ujh River, the Sahaar stream and the Ravi River exhibit significant stream offsets where the fault crosses these channels. The values of the morphometric indices viz. stream sinuosity index (S), stream length gradient index (SL), valley floor width to valley height ratio (Vf), mountain front sinuosity index (Smf), hypsometric integral (Hi), basin asymmetry ratio (AF) and basin elongation ratio (Eb) calculated along the linear river offsets with respect to longitudinal River segments of the Rivers Basantar, Tarnah, Ujh, Sahaar and Ravi Rivers reveal that terrain is tectonically active and can be placed in tectonic active class I. The fault has an apparent offset of about 2000 m with it as it crosses the Basantar, the Tarnah, the Ujh, the Sahaar and the Ravi Rivers. The stream offsets upon field and laboratory investigations are developed due to an active sinistral strike slip fault which is being named as Goran fault. This fault has a surface expression of 100 km extending from the Basantar in the northwest up to the Beas River in the southwest whereas the remaining segment may exist as a hidden fault all along the Himalaya.
文摘The ENE\|striking Altyn Tagh Fault (ATF) has been well known as a large, active left\|lateral strike\|slip fault that bounds the thrusting systems in NE Tibet.This fault has been the focal point in the debate between the discrete extrusion vs. distributed crustal shortening models. Although its active left\|lateralstrike\|slip features have been largely investigated and well documented by both satellite imagery and air\|photo interpretations and field observations, little study has been done upon its Cenozoic displacement history. Questions about the age of initiation and total offset accumulated on the fault remain controversial. A key area to resolve such question is located along the central segment of the fault in the Souerkuli and Mangar regions, where Neogene sedimentary basins well develop and are mostly distributed in three zones, namely from east to west: the Gobiling, Yitunbulak and Yusuale Tagh (Fig.1). Our field investigations were conducted along the ATF cutting the Yitunbulak and Gebiling Neogene sedimentary basins. Two stratigraphic unconformities observed within this Neogene conglomeratic series allow a separation of three major stratigraphic sequences and record the initiation and major deformational episodes of ATF during Cenozoic. An early stratigraphic unconformity occurred between a yellow depositional series below and early Pliocene red\|colored conglomeratic mudstones above. A later stratigraphic unconformities occurred between early and late Pliocene sedimentary series. The lower series below the early stratigraphic unconformities is mainly composed of a conglomeratic rocks containing cobbles and pebbles of basement rock units (mostly mylonitic granites, limestones and quartzes); this series has been poorly mapped and dated; its age could be assigned to late Oligocene to early Miocene; this series tilts to NW with an angle of about 30° and is overlain in angular unconformity by early Pliocene pebble\|sized conglomerates. A weathering zone on top of the lower conglomeratic series is clearly seen, that represents a long period of uplift and erosion. This lacuna occurred between early Miocene and early Pliocene in the west Qaidam basin, which has been documented only locally. Early Pliocene deposits correspond to alluvial to lacustrine facies rocks deposited in strike\|slip basin probably originated at releasing bend of the strike\|slip ATF; late Pliocene deposits is composed by fluviatile conglomerates and fanglomerates lying in unconformity on the upper Pliocene rocks. Early Quaternary deposits are absent along the ATF and have been well documented in the Qaidam basin. Late Quaternary fanglomerates infills active fault valleys.
文摘针对换相失败影响因素分析已经取得一些成果,但故障清除时刻(故障分闸角)对换相失败的影响有待进一步研究。首先基于换相失败过程分析过零点偏移角对关断角的影响;其次基于换相电压时间面积法分析不同故障合闸角对逆变器首次换相失败的影响,并进一步分析故障分闸角及过零点偏移角对后续换相失败的影响,发现故障在换相过程中清除引发后续换相失败风险最大;最后以单相接地故障为例,基于PSCAD/EMTDC中的(conseil international des grands reseaux electriques,CIGRE)模型的不同故障合闸角与分闸角的仿真测试结果验证了理论分析的正确性。