In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) ...In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.展开更多
Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full powe...Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full power converter wind turbines is composed and the model validation based on actual field measurements is performed. The paper is based on the measurements obtained from the real short circuit test applied to connection point of observed wind farm. The presented approach for validating the composed model and fault ride-through (FRT) capability for the whole wind park is unique in overall practice and its significance and importance is described and analyzed.展开更多
With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV sy...With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV system is controlled to keep grid connected, as well as inject reactive current to grid when fault occurs. The mathematical model of PV system is established and the fault characteristic is studied with respect to the control strategy. By analyzing the effect of reactive power supplied by the PV system to the point of common coupling (PCC) voltage, this paper proposes an adaptive voltage support control strategy to enhance the fault ride-through capability of PV system. The control strategy fully utilizes the PV system’s capability of voltage support and takes the safety of equipment into account as well. At last, the proposed control strategy is verified by simulation.展开更多
The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT ope...The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT operation of the wind farms, three methods were discussed. First, the rotor short current of doubly-fed induction generator (DFIG) was limited by introducing a rotor side protection circuit. Second, the voltage of DC bus was limited by a DC energy absorb circuit. Third, STATCOM was used to increase the low level voltages of the wind farm. Simulation under MATLAB was studied and the corresponding results were given and discussed. The methods proposed in this paper can limit the rotor short current and the DC voltage of the DFIG WT to some degree, but the voltage support to the power system during the fault largely depend on the installation place of STATCOM.展开更多
在大规模风电基地通过电网换相高压直流输电(LCCHVDC)远距离送出的背景下,直流系统换相失败故障会在送端产生暂态电压扰动。已有研究缺乏对风电机组呈现出的电压“先低后高”连续变化且磁链不断累积特性的探讨,亟须从磁链累积的角度分...在大规模风电基地通过电网换相高压直流输电(LCCHVDC)远距离送出的背景下,直流系统换相失败故障会在送端产生暂态电压扰动。已有研究缺乏对风电机组呈现出的电压“先低后高”连续变化且磁链不断累积特性的探讨,亟须从磁链累积的角度分析风电机组在换相失败期间的电压特性,提出一种具有暂态电压抑制作用的风机故障穿越(fault ride through,FRT)策略。首先,采用曲线拟合的方法,推导了双馈风电机组(doubly fed induction generator,DFIG)在直流系统换相失败期间的电压与磁链方程,分析了直流系统定电流环节(constant current amplifier,CCA)控制对暂态过电压的影响;其次,提出一种基于灭磁控制的故障穿越策略,通过全定子磁链观测并引入灭磁系数,在转子侧变流器(rotor side converter,RSC)有功、无功电流参考值中分别计及灭磁电流,拓宽了RSC无功输出的能力。最后,MATLAB/Simulink平台验证了所提策略在实现DFIG故障穿越的基础上还能够进一步抑制暂态过电压,提高了系统稳定性与安全性。展开更多
The series line-commutated converter(LCC)and modular multilevel converter(MMC)hybrid high-voltage direct current(HVDC)system provides a more economical and flexible alternative for ultra-HVDC(UHVDC)transmission,which ...The series line-commutated converter(LCC)and modular multilevel converter(MMC)hybrid high-voltage direct current(HVDC)system provides a more economical and flexible alternative for ultra-HVDC(UHVDC)transmission,which is the so-called Baihetan-Jiangsu HVDC(BJ-HVDC)project of China.In one LCC and two MMCs(1+2)operation mode,the sub-module(SM)capacitors suffer the most rigorous overvoltage induced by three-phase-to-ground fault at grid-side MMC and valve-side single-phase-to-ground fault in internal MMC.In order to suppress such huge overvoltage,this paper demonstrates a novel alternative by employing the MMC-based embedded battery energy storage system(MMC-BESS).Firstly,the inducements of SM overvoltage are analyzed.Then,coordinated with MMC-BESS,new fault ride-through(FRT)strategies are proposed to suppress the overvoltage and improve the FRT capability.Finally,several simulation scenarios are carried out on PSCAD/EMTDC.The overvoltage suppression is verified against auxiliary device used in the BJ-HVDC project in a monopolar BJ-HVDC system.Further,the proposed FRT strategies are validated in the southern Jiangsu power grid of China based on the planning data in the summer of 2025.Simulation results show that the MMC-BESS and proposed FRT strategies could effectively suppress the overvoltage and improve the FRT capability.展开更多
Experimental and theoretical studies have confirmed that,relative to a one-shot voltage fault,a doubly-fed induction generator(DFIG)will suffer a greater transient impact during continuous voltage faults.This paper pr...Experimental and theoretical studies have confirmed that,relative to a one-shot voltage fault,a doubly-fed induction generator(DFIG)will suffer a greater transient impact during continuous voltage faults.This paper presents the design and application of an effective scheme for DFIGs when a commutation failure(CF)occurs in a line-commutated converter based high-voltage direct current(LCC-HVDC)transmission system.First,transient demagnetization control without filters is proposed to offset the electromotive force(EMF)induced by the natural flux and other low-frequency flux components.Then,a rotor-side integrated impedance circuit is designed to limit the rotor overcurrent to ensure that the rotor-side converter(RSC)is controllable.Furthermore,coordinated control of the demagnetization and segmented reactive currents is implemented in the RSC.Comparative studies have shown that the proposed scheme can limit rotor fault currents and effectively improve the continuous fault ride-through capability of DFIGs.展开更多
This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching ...This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching control units(SCUs).Each SCU switches between a bang-bang funnel controller(BBFC)and proportional-integral(PI)control loop according to a state-dependent switching law.The BBFC can utilize the full control capability of each control loop using three-value control signals with the maximum available magnitude.A state-dependent switching law is designed for each SCU to guarantee its structural stability.Simulation studies are conducted to verify the superior fault ride-through capability of the MMC-HVDC transmission system controlled by FRTHC,in comparison to that controlled by a vector controller(VC)and a VC with DC voltage droop control(VDRC).展开更多
The installed capacity of renewable energy generation has continued to grow rapidly in recent years along with the global energy transition towards a 100%renewable-based power system.At the same time,the grid-connecte...The installed capacity of renewable energy generation has continued to grow rapidly in recent years along with the global energy transition towards a 100%renewable-based power system.At the same time,the grid-connected large-scale renewable energy brings significant challenges to the safe and stable operation of the power system due to the loss of synchronous machines.Therefore,self-synchronous wind turbines have attracted wide attention from both academia and industry.However,the understanding of the physical operation mechanisms of self-synchronous wind turbines is not clear.In particular,the transient characteristics and dynamic processes of wind turbines are fuzzy in the presence of grid disturbances.Furthermore,it is difficult to design an adaptive fault ride-through(FRT)control strategy.Thus,a dual-mode switching FRT control strategy for self-synchronous wind turbines is developed.Two FRT control strategies are used.In one strategy,the amplitude and phase of the internal potential are directly calculated according to the voltage drop when a minor grid fault occurs.The other dual-mode switching control strategy in the presence of a deep grid fault includes three parts:vector control during the grid fault,fault recovery vector control,and self-synchronous control.The proposed control strategy can significantly mitigate transient overvoltage,overcurrent,and multifrequency oscillation,thereby resulting in enhanced transient stability.Finally,simulation results are provided to validate the proposed control strategy.展开更多
When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined...When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined by RS control methods.For example,RS control may become saturated under fault,and causes the RS to change from an equivalent voltage source to an equivalent current source,making fault analysis more complicated.In addition,the grid code of the fault ride-through(FRT)requires the RES to output current according to its terminal voltage.This changes the fault point voltage and leads to RES voltage regulation and current redistribution,resulting in fault response interactions.To address these issues,this study describes how an MMC-integrated system has five operation modes and three common characteristics under the duration of the fault.The study also reveals several instances of RS performance degradation such as AC voltage loop saturation,and shows that RS power reversal can be significantly improved.An enhanced AC FRT control method is proposed to achieve controllable PCC voltage and continuous power transmission by actively reducing the PCC voltage amplitude.The robustness of the method is theoretically proven under parameter variation and operation mode switching.Finally,the feasibility of the proposed method is verified through MATLAB/Simulink results.展开更多
Modular multilevel converter (MMC) based fault ride through (FRT) control is a promising solution to deal with the pole-to-ground (PTG) fault in high voltage direct current (HVDC) system. However, when MMC switches to...Modular multilevel converter (MMC) based fault ride through (FRT) control is a promising solution to deal with the pole-to-ground (PTG) fault in high voltage direct current (HVDC) system. However, when MMC switches to the FRT control, capacitor voltage imbalance between upper and lower arms will occur, resulting in the deterioration of FRT performance. This letter provides a comprehensive analysis for the imbalance issue from the perspective of fundamental frequency circulating current (FFCC). It is found the imbalance during FRT stage will not expand continuously, but converge to a certain value gradually. The specific imbalance degree is closely associated with the amplitude of FFCC. In order to solve the imbalance issue, an open-loop balancing control is proposed. By introducing a fundamental frequency feedforward item to the inherent circulating current control, the proposed method can not only balance the capacitor voltages, but also minimize the amplitude of FFCC, and consequently the power loss of MMC during FRT process can be reduced. Finally, simulation results of PSCAD/ EMTDC verify the validity of theoretical analysis.展开更多
文摘In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.
文摘Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full power converter wind turbines is composed and the model validation based on actual field measurements is performed. The paper is based on the measurements obtained from the real short circuit test applied to connection point of observed wind farm. The presented approach for validating the composed model and fault ride-through (FRT) capability for the whole wind park is unique in overall practice and its significance and importance is described and analyzed.
文摘With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV system is controlled to keep grid connected, as well as inject reactive current to grid when fault occurs. The mathematical model of PV system is established and the fault characteristic is studied with respect to the control strategy. By analyzing the effect of reactive power supplied by the PV system to the point of common coupling (PCC) voltage, this paper proposes an adaptive voltage support control strategy to enhance the fault ride-through capability of PV system. The control strategy fully utilizes the PV system’s capability of voltage support and takes the safety of equipment into account as well. At last, the proposed control strategy is verified by simulation.
文摘The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT operation of the wind farms, three methods were discussed. First, the rotor short current of doubly-fed induction generator (DFIG) was limited by introducing a rotor side protection circuit. Second, the voltage of DC bus was limited by a DC energy absorb circuit. Third, STATCOM was used to increase the low level voltages of the wind farm. Simulation under MATLAB was studied and the corresponding results were given and discussed. The methods proposed in this paper can limit the rotor short current and the DC voltage of the DFIG WT to some degree, but the voltage support to the power system during the fault largely depend on the installation place of STATCOM.
文摘在大规模风电基地通过电网换相高压直流输电(LCCHVDC)远距离送出的背景下,直流系统换相失败故障会在送端产生暂态电压扰动。已有研究缺乏对风电机组呈现出的电压“先低后高”连续变化且磁链不断累积特性的探讨,亟须从磁链累积的角度分析风电机组在换相失败期间的电压特性,提出一种具有暂态电压抑制作用的风机故障穿越(fault ride through,FRT)策略。首先,采用曲线拟合的方法,推导了双馈风电机组(doubly fed induction generator,DFIG)在直流系统换相失败期间的电压与磁链方程,分析了直流系统定电流环节(constant current amplifier,CCA)控制对暂态过电压的影响;其次,提出一种基于灭磁控制的故障穿越策略,通过全定子磁链观测并引入灭磁系数,在转子侧变流器(rotor side converter,RSC)有功、无功电流参考值中分别计及灭磁电流,拓宽了RSC无功输出的能力。最后,MATLAB/Simulink平台验证了所提策略在实现DFIG故障穿越的基础上还能够进一步抑制暂态过电压,提高了系统稳定性与安全性。
文摘The series line-commutated converter(LCC)and modular multilevel converter(MMC)hybrid high-voltage direct current(HVDC)system provides a more economical and flexible alternative for ultra-HVDC(UHVDC)transmission,which is the so-called Baihetan-Jiangsu HVDC(BJ-HVDC)project of China.In one LCC and two MMCs(1+2)operation mode,the sub-module(SM)capacitors suffer the most rigorous overvoltage induced by three-phase-to-ground fault at grid-side MMC and valve-side single-phase-to-ground fault in internal MMC.In order to suppress such huge overvoltage,this paper demonstrates a novel alternative by employing the MMC-based embedded battery energy storage system(MMC-BESS).Firstly,the inducements of SM overvoltage are analyzed.Then,coordinated with MMC-BESS,new fault ride-through(FRT)strategies are proposed to suppress the overvoltage and improve the FRT capability.Finally,several simulation scenarios are carried out on PSCAD/EMTDC.The overvoltage suppression is verified against auxiliary device used in the BJ-HVDC project in a monopolar BJ-HVDC system.Further,the proposed FRT strategies are validated in the southern Jiangsu power grid of China based on the planning data in the summer of 2025.Simulation results show that the MMC-BESS and proposed FRT strategies could effectively suppress the overvoltage and improve the FRT capability.
基金supported by the National Natural Science Foundation of China(No.51907134)。
文摘Experimental and theoretical studies have confirmed that,relative to a one-shot voltage fault,a doubly-fed induction generator(DFIG)will suffer a greater transient impact during continuous voltage faults.This paper presents the design and application of an effective scheme for DFIGs when a commutation failure(CF)occurs in a line-commutated converter based high-voltage direct current(LCC-HVDC)transmission system.First,transient demagnetization control without filters is proposed to offset the electromotive force(EMF)induced by the natural flux and other low-frequency flux components.Then,a rotor-side integrated impedance circuit is designed to limit the rotor overcurrent to ensure that the rotor-side converter(RSC)is controllable.Furthermore,coordinated control of the demagnetization and segmented reactive currents is implemented in the RSC.Comparative studies have shown that the proposed scheme can limit rotor fault currents and effectively improve the continuous fault ride-through capability of DFIGs.
基金supported in part by the State Key Program of National Natural Science Foundation of China (No.U1866210)Young Elite Scientists Sponsorship Program by CSEE (No.CSEE-YESS-2018007)Science and Technology Projects in Guangzhou (No.202102020221)。
文摘This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching control units(SCUs).Each SCU switches between a bang-bang funnel controller(BBFC)and proportional-integral(PI)control loop according to a state-dependent switching law.The BBFC can utilize the full control capability of each control loop using three-value control signals with the maximum available magnitude.A state-dependent switching law is designed for each SCU to guarantee its structural stability.Simulation studies are conducted to verify the superior fault ride-through capability of the MMC-HVDC transmission system controlled by FRTHC,in comparison to that controlled by a vector controller(VC)and a VC with DC voltage droop control(VDRC).
基金supported in part by the National Natural Science Foundation of China (No.52007174)。
文摘The installed capacity of renewable energy generation has continued to grow rapidly in recent years along with the global energy transition towards a 100%renewable-based power system.At the same time,the grid-connected large-scale renewable energy brings significant challenges to the safe and stable operation of the power system due to the loss of synchronous machines.Therefore,self-synchronous wind turbines have attracted wide attention from both academia and industry.However,the understanding of the physical operation mechanisms of self-synchronous wind turbines is not clear.In particular,the transient characteristics and dynamic processes of wind turbines are fuzzy in the presence of grid disturbances.Furthermore,it is difficult to design an adaptive fault ride-through(FRT)control strategy.Thus,a dual-mode switching FRT control strategy for self-synchronous wind turbines is developed.Two FRT control strategies are used.In one strategy,the amplitude and phase of the internal potential are directly calculated according to the voltage drop when a minor grid fault occurs.The other dual-mode switching control strategy in the presence of a deep grid fault includes three parts:vector control during the grid fault,fault recovery vector control,and self-synchronous control.The proposed control strategy can significantly mitigate transient overvoltage,overcurrent,and multifrequency oscillation,thereby resulting in enhanced transient stability.Finally,simulation results are provided to validate the proposed control strategy.
基金supported in part by the National Key Research and Development Program of China(No.2020YFF0305800)State Grid Science Technology Project(No.520201210025)。
文摘When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined by RS control methods.For example,RS control may become saturated under fault,and causes the RS to change from an equivalent voltage source to an equivalent current source,making fault analysis more complicated.In addition,the grid code of the fault ride-through(FRT)requires the RES to output current according to its terminal voltage.This changes the fault point voltage and leads to RES voltage regulation and current redistribution,resulting in fault response interactions.To address these issues,this study describes how an MMC-integrated system has five operation modes and three common characteristics under the duration of the fault.The study also reveals several instances of RS performance degradation such as AC voltage loop saturation,and shows that RS power reversal can be significantly improved.An enhanced AC FRT control method is proposed to achieve controllable PCC voltage and continuous power transmission by actively reducing the PCC voltage amplitude.The robustness of the method is theoretically proven under parameter variation and operation mode switching.Finally,the feasibility of the proposed method is verified through MATLAB/Simulink results.
基金supported by Zhejiang Province Natural Science Foundation of China under Grant LQ22E070002Shandong Province Natural Science Foundation of China under Grant ZR2020QE215.
文摘Modular multilevel converter (MMC) based fault ride through (FRT) control is a promising solution to deal with the pole-to-ground (PTG) fault in high voltage direct current (HVDC) system. However, when MMC switches to the FRT control, capacitor voltage imbalance between upper and lower arms will occur, resulting in the deterioration of FRT performance. This letter provides a comprehensive analysis for the imbalance issue from the perspective of fundamental frequency circulating current (FFCC). It is found the imbalance during FRT stage will not expand continuously, but converge to a certain value gradually. The specific imbalance degree is closely associated with the amplitude of FFCC. In order to solve the imbalance issue, an open-loop balancing control is proposed. By introducing a fundamental frequency feedforward item to the inherent circulating current control, the proposed method can not only balance the capacitor voltages, but also minimize the amplitude of FFCC, and consequently the power loss of MMC during FRT process can be reduced. Finally, simulation results of PSCAD/ EMTDC verify the validity of theoretical analysis.