Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor fault...Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.展开更多
As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safe...As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safety.This paper analyzes a fault diagnosis approach by using rough set theory in which how to reduce decision table of data set is a main calculation intensive task.Aiming at this reduction problem,a heuristic reduction algorithm based on attribution length and frequency is proposed.At the same time,the corresponding value reduction method is proposed in order to fulfill the reduction and diagnosis rules extraction.Meanwhile,a Euclid matching method is introduced to solve confliction problems among the extracted rules when some information is lacking.Principal of the whole algorithm is clear and diagnostic rules distilled from the reduction are concise.Moreover,it needs less calculation towards specific discernibility matrix,and thus avoids the corresponding NP hard problem.The whole process is realized by MATLAB programming.A simulation example shows that the method has a fast calculation speed,and the extracted rules can reflect the characteristic of fault with a concise form.The rule database,formed by different reduction of decision table,can diagnose single fault and multi-faults efficiently,and give satisfied results even when the existed information is incomplete.The proposed method has good error-tolerate capability and the potential for on-line fault diagnosis.展开更多
Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key...Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key point in the operation. An expert fault diagnosis system for the leaching process was proposed, which has been implemented in a nonferrous metals smeltery. The system architecture and the diagnosis procedure were presented, and the rule models with the certainty factor were constructed based on the empirical knowledge, empirical data and statistical results on past fault countermeasures, and an expert reasoning strategy was proposed which employs the rule models and Beyes presentation and combines forward chaining and backward chaining. [展开更多
According to life analysis in reliability theory, certain diagnosis rules can be used to diagnose machines' faults. On this basis, considering the indefiniteness in machine working states, the accurate diagnosis r...According to life analysis in reliability theory, certain diagnosis rules can be used to diagnose machines' faults. On this basis, considering the indefiniteness in machine working states, the accurate diagnosis rule was extended to fuzzy diagnosis rule by using basic concepts and methods of fuzzy mathematics. The formulas of fault probability under different conditions were deduced. In the end, an example is given and the results of two methods were compared.展开更多
A new fault detection and diagnosis approach is developed in this paper for a class of singular nonlinear systems via the use of adaptive updating rules. Both detection and diagnostic observers are established, where ...A new fault detection and diagnosis approach is developed in this paper for a class of singular nonlinear systems via the use of adaptive updating rules. Both detection and diagnostic observers are established, where Lyapunov stability theory is used to obtain the required adaptive tuning rules for the estimation of the process faults. This has led to stable observation error systems for both fault detection and diagnosis. A simulated numerical example is included to demonstrate the use of the proposed approach and encouraging results have been obtained.展开更多
There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fa...There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fault diagnosis for a rotary machine based on information entropy theory and rough set theory is presented in this paper. The model has clear mathematical definition and can dispose both complete unification information and complete inconsistent information of vibration faults. By using the model, decision rules of six typical vibration faults of a steam turbine and electric generating set are deduced from experiment samples. Finally, the decision rules are validated by selected samples and good identification results are acquired.展开更多
基金supported by National Natural Science Foundation of China(Grant No. 51275264)National Hi-tech Research and Development Program of China(863 Program, Grant No. 2011AA11A269)
文摘Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.
基金Project Supported by National Natural Science Foundation of China (50607023), Natural Science Femdation of CQ CSTC (2006BB2189)
文摘As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safety.This paper analyzes a fault diagnosis approach by using rough set theory in which how to reduce decision table of data set is a main calculation intensive task.Aiming at this reduction problem,a heuristic reduction algorithm based on attribution length and frequency is proposed.At the same time,the corresponding value reduction method is proposed in order to fulfill the reduction and diagnosis rules extraction.Meanwhile,a Euclid matching method is introduced to solve confliction problems among the extracted rules when some information is lacking.Principal of the whole algorithm is clear and diagnostic rules distilled from the reduction are concise.Moreover,it needs less calculation towards specific discernibility matrix,and thus avoids the corresponding NP hard problem.The whole process is realized by MATLAB programming.A simulation example shows that the method has a fast calculation speed,and the extracted rules can reflect the characteristic of fault with a concise form.The rule database,formed by different reduction of decision table,can diagnose single fault and multi-faults efficiently,and give satisfied results even when the existed information is incomplete.The proposed method has good error-tolerate capability and the potential for on-line fault diagnosis.
文摘Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key point in the operation. An expert fault diagnosis system for the leaching process was proposed, which has been implemented in a nonferrous metals smeltery. The system architecture and the diagnosis procedure were presented, and the rule models with the certainty factor were constructed based on the empirical knowledge, empirical data and statistical results on past fault countermeasures, and an expert reasoning strategy was proposed which employs the rule models and Beyes presentation and combines forward chaining and backward chaining. [
文摘According to life analysis in reliability theory, certain diagnosis rules can be used to diagnose machines' faults. On this basis, considering the indefiniteness in machine working states, the accurate diagnosis rule was extended to fuzzy diagnosis rule by using basic concepts and methods of fuzzy mathematics. The formulas of fault probability under different conditions were deduced. In the end, an example is given and the results of two methods were compared.
基金the Outstanding Oversea Award of the Chinese Academy of Sciences (No. 2004-1-4)the Natural Science Foundationof China (No. 60534010)
文摘A new fault detection and diagnosis approach is developed in this paper for a class of singular nonlinear systems via the use of adaptive updating rules. Both detection and diagnostic observers are established, where Lyapunov stability theory is used to obtain the required adaptive tuning rules for the estimation of the process faults. This has led to stable observation error systems for both fault detection and diagnosis. A simulated numerical example is included to demonstrate the use of the proposed approach and encouraging results have been obtained.
基金The paper is supported by the 863 Program of China under Grant No 2006AA04A110
文摘There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fault diagnosis for a rotary machine based on information entropy theory and rough set theory is presented in this paper. The model has clear mathematical definition and can dispose both complete unification information and complete inconsistent information of vibration faults. By using the model, decision rules of six typical vibration faults of a steam turbine and electric generating set are deduced from experiment samples. Finally, the decision rules are validated by selected samples and good identification results are acquired.