Fuzzy mathematics is an important means to quantitatively evaluate the properties of fault sealing in petroleum reservoirs.To accurately study fault sealing,the comprehensive quantitative evaluation method of fuzzy ma...Fuzzy mathematics is an important means to quantitatively evaluate the properties of fault sealing in petroleum reservoirs.To accurately study fault sealing,the comprehensive quantitative evaluation method of fuzzy mathematics is improved based on a previous study.First,the single-factor membership degree is determined using the dynamic clustering method,then a single-factor evaluation matrix is constructed using a continuous grading function,and finally,the probability distribution of the evaluation grade in a fuzzy evaluation matrix is analyzed.In this study,taking the F1 fault located in the northeastern Chepaizi Bulge as an example,the sealing properties of faults in different strata are quantitatively evaluated using both an improved and an un-improved comprehensive fuzzy mathematics quantitative evaluation method.Based on current oil and gas distribution,it is found that our evaluation results before and after improvement are significantly different.For faults in"best"and"poorest"intervals,our evaluation results are consistent with oil and gas distribution.However,for the faults in"good"or"poor"intervals,our evaluation is not completelyconsistent with oil and gas distribution.The improved evaluation results reflect the overall and local sealing properties of target zones and embody the nonuniformity of fault sealing,indicating the improved method is more suitable for evaluating fault sealing under complicated conditions.展开更多
Fault seals are significant for petroleum exploration and production.This study summarizes the fault sealing impacting factors,including lithological juxtaposition,mud smearing,fault rocks and the fault plane stress s...Fault seals are significant for petroleum exploration and production.This study summarizes the fault sealing impacting factors,including lithological juxtaposition,mud smearing,fault rocks and the fault plane stress states,as well as evaluation methods like Allan maps and Shale Gouge Ratio(SGR).The seal evaluation for a wrench fault focuses on its particular structural features.The evaluation methods were applied to the Jinma-Yazihe structure and the Shunbei oilfield.The source rock is the Xujiahe Formation of the Upper Triassic,the reservoirs and caprocks being of the Shaximiao Formation of the Lower Jurassic.The fault sealing evaluations in major faults proved the reservoir formation processes in the wells Jinfo 1(JF1)and Chuanya 609(CY-609),based on the editions of the Allan map showing lithological juxtaposition,the calculation of SGR showing mud smear and analyses of fault stress states.The analyses of stress states were also applied to Shunbei 5 strike-slip fault in the Shunbei area in Tarim Basin.The various sections along the fault were of different mechanical properties,such as compression and extension.Petroleum exploration has demonstrated that the extensional sections are more favorable for oil accumulation than the compressional sections.These evolutionary methods and other understandings will help in analyses of deep fault sealing.展开更多
Based on previous studies on the internal structures of fault belts, the fault belts in the Laoyemiao Oilfield of the Nanpu Sag can be divided into three units, a crushed zone, an upper induced fracture zone and a low...Based on previous studies on the internal structures of fault belts, the fault belts in the Laoyemiao Oilfield of the Nanpu Sag can be divided into three units, a crushed zone, an upper induced fracture zone and a lower induced fracture zone according to the log response characteristics. The upper induced fracture zone is characterized by the development of pervasive fractures and has a poor sealing or non-sealing capability. It therefore can act as pathways for hydrocarbon migration. The lower induced fracture zone consists of fewer fractures and has limited sealing capability. The crushed zone has a good sealing capability comparable to mudstone and can thus prevent lateral migration of fluid. Through physical modeling and comparing laboratory data with calculated data of oil column heights of traps sealed by faults, it is concluded that the fault-sealing capability for oil and gas is limited. When the oil column height reaches a threshold, oil will spill over from the top of reservoir along the lower induced fracture zone under the action of buoyancy, and the size of reservoir will remain unchanged. Analysis of the formation mechanisms of the fault-sealed reservoirs in the Nanpu Sag indicated that the charging sequence of oil and gas in the reservoir was from lower formation to upper formation, with the fault playing an important role in oil and gas accumulation. The hydrocarbon potential in reverse fault-sealed traps is much better than that in the consequent fault-sealed traps. The reverse fault-sealed traps are favorable and preferred exploration targets.展开更多
Based on ultrasonic test of fault rocks, the re-sponses for wave velocity and quality factor (Q value) to lithology, porosity and permeability of fault rocks and me-chanical property of faults are studied. In this pap...Based on ultrasonic test of fault rocks, the re-sponses for wave velocity and quality factor (Q value) to lithology, porosity and permeability of fault rocks and me-chanical property of faults are studied. In this paper, a new quantitative estimate method of fault seals is originally of-fered. The conclusions are as follows: (1) Wave velocity and Q value increase and porosity decreases with the increase in stress perpendicular to joint; (2) In compressive and com-presso-shear fault rocks that are obviously anisotropic com-pared with their original rocks, the wave velocity and Q value are greater in the direction parallel with foliation, and usually less perpendicular to it. In tensile and tenso-shear fault rocks that are not obviously anisotropic, the wave ve-locity and Q value are under that of original rocks; (3) In foliated fault rocks, the direction with minimal wave velocity and Q value is the best direction for sealing; on the contrary it is the best for flowing; (4) Structural factures develop mainly along foliation, the minimal wave velocity and Q value reflect the flowing capacity in parallel direction to fo-liation, and the maximal wave velocity as well as Q value reflect the sealing capacity in normal direction to foliation. The new estimate method is based upon contrast of wave velocity and Q value between fault rocks and their original rocks, and is divided into three parts that are respectively to identify rock’s lithology, to judge mechanic property of faults and to Judge sealing capacity of faults. Although there is vast scale effect between ultrasonic wave and seismic wave, they have similar regularity of response to fabric and porosity of faults. This research offers new application for seismic data and petrophysical basis for seismological estimation of fault seals. The estimate precision will be improved with the en-hancement of three-dimensional seismic prospecting work.展开更多
A fault is not simply a plane, but a zone consisting of a series of broken planes or lower faults. The greater the scale of faults, the wider and more complex the fault zone is. Fault-sealing properties are influenced...A fault is not simply a plane, but a zone consisting of a series of broken planes or lower faults. The greater the scale of faults, the wider and more complex the fault zone is. Fault-sealing properties are influenced by the fault zone itself, whose fault displacement, depth, net-to-gross-ratio of mudstone, fault plane angle, and fault mechanical properties play important controlling roles. The sealing of hydrocarbon by the fault zone depends on whether the fault zone can form a continuous sealing zone and if the pore throats connecting those fault zones are small enough. The concept of fault zone-sealing potential is proposed here, and a quantitative formula is established by using a great amount of practical statistical data as well as the fuzzy comprehensive evaluation method, which is a comprehensive characterization parameter to judge whether or not fault zones could seal oil hydrocarbon. The greater the value of the fault zone-sealing potential, the better sealed the fault is. For example, with increasing depth, the sealing degree of the Xin 68 Fault in the Dongxin 1 oilfield changes greatly, reflecting the complexity of fault-sealing properties.展开更多
To evaluate the lateral sealing mechanism of extensional fault based on the pressure difference between fault and reservoir, an integral mathematical-geological model of diagenetic time on diagenetic pressure consider...To evaluate the lateral sealing mechanism of extensional fault based on the pressure difference between fault and reservoir, an integral mathematical-geological model of diagenetic time on diagenetic pressure considering the influence of diagenetic time on the diagenetic pressure and diagenetic degree of fault rock has been established to quantitatively calculate the lateral sealing ability of extensional fault. By calculating the time integral of the vertical stress and horizontal in-situ stress on the fault rock and surrounding rock, the burial depth of the surrounding rock with the same clay content and diagenesis degree as the target fault rock was worked out. In combination with the statistical correlation of clay content, burial depth and displacement pressure of rock in the study area, the displacement pressure of target fault rock was calculated quantitatively. The calculated displacement pressure was compared with that of the target reservoir to quantitatively evaluate lateral sealing state and ability of the extensional fault. The method presented in this work was used to evaluate the sealing of F_(1), F_(2) and F_(3) faults in No.1 structure of Nanpu Sag, and the results were compared with those from fault-reservoir displacement pressure differential methods without considering the diagenetic time and simple considering the diagenetic time. It is found that the results calculated by the integral mathematical-geological model are the closest to the actual underground situation, the errors between the hydrocarbon column height predicted by this method and the actual column height were 0–8 m only, proving that this model is more feasible and credible.展开更多
The fault system of Liaodong Bay developed extensively under the control of the Tanlu Fault. The fault system can be grouped into strike-slip faults of grade Ⅰ, trunk faults of grade Ⅱand branch faults (induced fau...The fault system of Liaodong Bay developed extensively under the control of the Tanlu Fault. The fault system can be grouped into strike-slip faults of grade Ⅰ, trunk faults of grade Ⅱand branch faults (induced faults) of grade Ⅲ respectively based on its developmental scale. The faults of grade Ⅰ and Ⅱwere deep, early and large while the faults of grade Ⅲwere shallow, late and small. The formation, evolution and distribution features played a significant role in controlling the migration of oil and gas in both horizontal and vertical directions. The fluid transfer in the fault system occurred in the process of faulting. The strike-slip and trunk faults moved actively forming predominant pathways for oil and gas migration. The branch faults, with weak activity, generally controlled the development of traps and were beneficial for the accumulation and preservation of oil and gas. The faults of grade Ⅰ and Ⅱ formed the major migration pathways for oil and gas, but their fault activity rates appeared to vary along their strikes. The zones with a relatively low fault activity rate might be favorable for oil and gas accumulation. When the activities of strike-slip, trunk, and branch faults came to a halt, the fault seal behavior had a vitally important effect on the accumulation of oil and gas. The controlling role of the fault over fluid distribution was further analyzed by calculating the fault activity quantitatively.展开更多
基金supported by the Science and Technology Project of Universities and Colleges in Shandong Province ‘‘Investigation on diagenetic environment and transformation pattern of red-bed reservoirs in the rift basins’’ (No. J16LH52)
文摘Fuzzy mathematics is an important means to quantitatively evaluate the properties of fault sealing in petroleum reservoirs.To accurately study fault sealing,the comprehensive quantitative evaluation method of fuzzy mathematics is improved based on a previous study.First,the single-factor membership degree is determined using the dynamic clustering method,then a single-factor evaluation matrix is constructed using a continuous grading function,and finally,the probability distribution of the evaluation grade in a fuzzy evaluation matrix is analyzed.In this study,taking the F1 fault located in the northeastern Chepaizi Bulge as an example,the sealing properties of faults in different strata are quantitatively evaluated using both an improved and an un-improved comprehensive fuzzy mathematics quantitative evaluation method.Based on current oil and gas distribution,it is found that our evaluation results before and after improvement are significantly different.For faults in"best"and"poorest"intervals,our evaluation results are consistent with oil and gas distribution.However,for the faults in"good"or"poor"intervals,our evaluation is not completelyconsistent with oil and gas distribution.The improved evaluation results reflect the overall and local sealing properties of target zones and embody the nonuniformity of fault sealing,indicating the improved method is more suitable for evaluating fault sealing under complicated conditions.
基金funded by the National Key Research and Development Plan(Grant No.2017YFC0603105)the National Natural Science Foundation of China(Grant No.42172138)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA14010306)。
文摘Fault seals are significant for petroleum exploration and production.This study summarizes the fault sealing impacting factors,including lithological juxtaposition,mud smearing,fault rocks and the fault plane stress states,as well as evaluation methods like Allan maps and Shale Gouge Ratio(SGR).The seal evaluation for a wrench fault focuses on its particular structural features.The evaluation methods were applied to the Jinma-Yazihe structure and the Shunbei oilfield.The source rock is the Xujiahe Formation of the Upper Triassic,the reservoirs and caprocks being of the Shaximiao Formation of the Lower Jurassic.The fault sealing evaluations in major faults proved the reservoir formation processes in the wells Jinfo 1(JF1)and Chuanya 609(CY-609),based on the editions of the Allan map showing lithological juxtaposition,the calculation of SGR showing mud smear and analyses of fault stress states.The analyses of stress states were also applied to Shunbei 5 strike-slip fault in the Shunbei area in Tarim Basin.The various sections along the fault were of different mechanical properties,such as compression and extension.Petroleum exploration has demonstrated that the extensional sections are more favorable for oil accumulation than the compressional sections.These evolutionary methods and other understandings will help in analyses of deep fault sealing.
基金the Key Project of Chinese National Programs for Fundamental Research and Development (973 Program, No. 2006CB202308)the National Natural Science Foundation of China (Grant No. 40472078)
文摘Based on previous studies on the internal structures of fault belts, the fault belts in the Laoyemiao Oilfield of the Nanpu Sag can be divided into three units, a crushed zone, an upper induced fracture zone and a lower induced fracture zone according to the log response characteristics. The upper induced fracture zone is characterized by the development of pervasive fractures and has a poor sealing or non-sealing capability. It therefore can act as pathways for hydrocarbon migration. The lower induced fracture zone consists of fewer fractures and has limited sealing capability. The crushed zone has a good sealing capability comparable to mudstone and can thus prevent lateral migration of fluid. Through physical modeling and comparing laboratory data with calculated data of oil column heights of traps sealed by faults, it is concluded that the fault-sealing capability for oil and gas is limited. When the oil column height reaches a threshold, oil will spill over from the top of reservoir along the lower induced fracture zone under the action of buoyancy, and the size of reservoir will remain unchanged. Analysis of the formation mechanisms of the fault-sealed reservoirs in the Nanpu Sag indicated that the charging sequence of oil and gas in the reservoir was from lower formation to upper formation, with the fault playing an important role in oil and gas accumulation. The hydrocarbon potential in reverse fault-sealed traps is much better than that in the consequent fault-sealed traps. The reverse fault-sealed traps are favorable and preferred exploration targets.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 401 72072 and 40472074) ;Natural Basic Research Program of China (Grant No.2001CB209133).
文摘Based on ultrasonic test of fault rocks, the re-sponses for wave velocity and quality factor (Q value) to lithology, porosity and permeability of fault rocks and me-chanical property of faults are studied. In this paper, a new quantitative estimate method of fault seals is originally of-fered. The conclusions are as follows: (1) Wave velocity and Q value increase and porosity decreases with the increase in stress perpendicular to joint; (2) In compressive and com-presso-shear fault rocks that are obviously anisotropic com-pared with their original rocks, the wave velocity and Q value are greater in the direction parallel with foliation, and usually less perpendicular to it. In tensile and tenso-shear fault rocks that are not obviously anisotropic, the wave ve-locity and Q value are under that of original rocks; (3) In foliated fault rocks, the direction with minimal wave velocity and Q value is the best direction for sealing; on the contrary it is the best for flowing; (4) Structural factures develop mainly along foliation, the minimal wave velocity and Q value reflect the flowing capacity in parallel direction to fo-liation, and the maximal wave velocity as well as Q value reflect the sealing capacity in normal direction to foliation. The new estimate method is based upon contrast of wave velocity and Q value between fault rocks and their original rocks, and is divided into three parts that are respectively to identify rock’s lithology, to judge mechanic property of faults and to Judge sealing capacity of faults. Although there is vast scale effect between ultrasonic wave and seismic wave, they have similar regularity of response to fabric and porosity of faults. This research offers new application for seismic data and petrophysical basis for seismological estimation of fault seals. The estimate precision will be improved with the en-hancement of three-dimensional seismic prospecting work.
基金the project "Study on Technology to Increase the Recovery Ratio in Oilfields with Complex Fault Block" (P01035), a Science and Technology Promotion Project in the Tenth Five-Year Plan of SINOPECT
文摘A fault is not simply a plane, but a zone consisting of a series of broken planes or lower faults. The greater the scale of faults, the wider and more complex the fault zone is. Fault-sealing properties are influenced by the fault zone itself, whose fault displacement, depth, net-to-gross-ratio of mudstone, fault plane angle, and fault mechanical properties play important controlling roles. The sealing of hydrocarbon by the fault zone depends on whether the fault zone can form a continuous sealing zone and if the pore throats connecting those fault zones are small enough. The concept of fault zone-sealing potential is proposed here, and a quantitative formula is established by using a great amount of practical statistical data as well as the fuzzy comprehensive evaluation method, which is a comprehensive characterization parameter to judge whether or not fault zones could seal oil hydrocarbon. The greater the value of the fault zone-sealing potential, the better sealed the fault is. For example, with increasing depth, the sealing degree of the Xin 68 Fault in the Dongxin 1 oilfield changes greatly, reflecting the complexity of fault-sealing properties.
基金Supported by the China National Science and Technology Major Project(41872153)Northeast Petroleum University Research Startup Fund(1305021839)。
文摘To evaluate the lateral sealing mechanism of extensional fault based on the pressure difference between fault and reservoir, an integral mathematical-geological model of diagenetic time on diagenetic pressure considering the influence of diagenetic time on the diagenetic pressure and diagenetic degree of fault rock has been established to quantitatively calculate the lateral sealing ability of extensional fault. By calculating the time integral of the vertical stress and horizontal in-situ stress on the fault rock and surrounding rock, the burial depth of the surrounding rock with the same clay content and diagenesis degree as the target fault rock was worked out. In combination with the statistical correlation of clay content, burial depth and displacement pressure of rock in the study area, the displacement pressure of target fault rock was calculated quantitatively. The calculated displacement pressure was compared with that of the target reservoir to quantitatively evaluate lateral sealing state and ability of the extensional fault. The method presented in this work was used to evaluate the sealing of F_(1), F_(2) and F_(3) faults in No.1 structure of Nanpu Sag, and the results were compared with those from fault-reservoir displacement pressure differential methods without considering the diagenetic time and simple considering the diagenetic time. It is found that the results calculated by the integral mathematical-geological model are the closest to the actual underground situation, the errors between the hydrocarbon column height predicted by this method and the actual column height were 0–8 m only, proving that this model is more feasible and credible.
文摘The fault system of Liaodong Bay developed extensively under the control of the Tanlu Fault. The fault system can be grouped into strike-slip faults of grade Ⅰ, trunk faults of grade Ⅱand branch faults (induced faults) of grade Ⅲ respectively based on its developmental scale. The faults of grade Ⅰ and Ⅱwere deep, early and large while the faults of grade Ⅲwere shallow, late and small. The formation, evolution and distribution features played a significant role in controlling the migration of oil and gas in both horizontal and vertical directions. The fluid transfer in the fault system occurred in the process of faulting. The strike-slip and trunk faults moved actively forming predominant pathways for oil and gas migration. The branch faults, with weak activity, generally controlled the development of traps and were beneficial for the accumulation and preservation of oil and gas. The faults of grade Ⅰ and Ⅱ formed the major migration pathways for oil and gas, but their fault activity rates appeared to vary along their strikes. The zones with a relatively low fault activity rate might be favorable for oil and gas accumulation. When the activities of strike-slip, trunk, and branch faults came to a halt, the fault seal behavior had a vitally important effect on the accumulation of oil and gas. The controlling role of the fault over fluid distribution was further analyzed by calculating the fault activity quantitatively.