Most outbursts of gas and coal occur along geological structural zones during mining. Recent research revealed that most outbursts occurred on the downthrow sides of faults, and the key reason is that the outburst coa...Most outbursts of gas and coal occur along geological structural zones during mining. Recent research revealed that most outbursts occurred on the downthrow sides of faults, and the key reason is that the outburst coal,often known as tectonic coal or soft coal, mainly exists on the downthrow wall of faults-hanging of normal faults or footwall of reverse faults. This paper will mainly discuss the outburst prone on different sides of faults and its causes.展开更多
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersp...Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset.展开更多
Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics ...Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics of edge networks,such as limited resources,complex network faults,and the need for high real-time performance,enhancing and optimizing existing network fault diagnosis methods is necessary.Therefore,this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network(LSNN).Firstly,we use the Izhikevich neurons model to replace the Leaky Integrate and Fire(LIF)neurons model in the LSNN model.Izhikevich neurons inherit the simplicity of LIF neurons but also possess richer behavioral characteristics and flexibility to handle diverse data inputs.Inspired by Fast Spiking Interneurons(FSIs)with a high-frequency firing pattern,we use the parameters of FSIs.Secondly,inspired by the connection mode based on spiking dynamics in the basal ganglia(BG)area of the brain,we propose the pruning approach based on the FSIs of the BG in LSNN to improve computational efficiency and reduce the demand for computing resources and energy consumption.Furthermore,we propose a multiple iterative Dynamic Spike Timing Dependent Plasticity(DSTDP)algorithm to enhance the accuracy of the LSNN model.Experiments on two server fault datasets demonstrate significant precision,recall,and F1 improvements across three diagnosis dimensions.Simultaneously,lightweight indicators such as Params and FLOPs significantly reduced,showcasing the LSNN’s advanced performance and model efficiency.To conclude,experiment results on a pair of datasets indicate that the LSNN model surpasses traditional models and achieves cutting-edge outcomes in network fault diagnosis tasks.展开更多
Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading fau...Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method.展开更多
Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, howeve...Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, however, low-frequency GPR survey to investigate fault-related depositional systems at greater depths. The Quinta-Cassino area in the Rio Grande do Sul Coastal Plain (RGSCP, Brazil) shows a wide strandplain that is made off by very long, continuous, and linear geomorphic features (beach ridges). This strandplain extends for ~70 km southward. The beach ridges show low-angle truncations against the Quinta escarpment, and also truncations in the strandplain. The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;previous model assumes that no deformational episode occurred in RGSCP. The geophysical and geological surveys carried out in this area showed the existence of listric fault controlling the beach ridges in the escarpments and hanging-wall blocks. The radargrams could distinguish Pleistocene basement unit anticlockwise rotation, thickening of beach ridges radarfacies close to listric normal faults, and horst structures. These deformational features indicate that the extensional zone of a large-scale gravity-driven structure controlled the mechanical subsidence, the Holocene sedimentation and its stratigraphic and geomorphic features in the Quinta-Cassino area to build up an asymmetric delta. The results point to a new approach in dealing with RGSCP Holocene evolution.展开更多
A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backsteppin...A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backstepping with the sliding mode control strategy could guarantee the system’s stability and track desired signals under external disturbances and engine faults. Firstly, attitude mode description and the engine faulty model are given. Secondly, a nominal control law is designed.Thirdly, a sliding mode observer is given later in order to estimate both the information of engine faults and external disturbances. An adaptive sliding mode technology based on the previous nominal control law is developed via updating faulty parameters. Finally,analyze the system’s fault-tolerant performance and reliability through experiment simulation, which verifies the proposed design of fault-tolerant control can tolerate engine faults, as well as the strong robustness for external disturbance.展开更多
Since the early 1970s tremendous growth has been seen in the research of software reliability growth modeling. In general, software reliability growth models (SRGMs) are applicable to the late stages of testing in s...Since the early 1970s tremendous growth has been seen in the research of software reliability growth modeling. In general, software reliability growth models (SRGMs) are applicable to the late stages of testing in software development and they can provide useful information about how to improve the reliability of software products. A number of SRGMs have been proposed in the literature to represent time-dependent fault identification / removal phenomenon; still new models are being proposed that could fit a greater number of reliability growth curves. Often, it is assumed that detected faults are immediately corrected when mathematical models are developed. This assumption may not be realistic in practice because the time to remove a detected fault depends on the complexity of the fault, the skill and experience of the personnel, the size of the debugging team, the technique, and so on. Thus, the detected fault need not be immediately removed, and it may lag the fault detection process by a delay effect factor. In this paper, we first review how different software reliability growth models have been developed, where fault detection process is dependent not only on the number of residual fault content but also on the testing time, and see how these models can be reinterpreted as the delayed fault detection model by using a delay effect factor. Based on the power function of the testing time concept, we propose four new SRGMs that assume the presence of two types of faults in the software: leading and dependent faults. Leading faults are those that can be removed upon a failure being observed. However, dependent faults are masked by leading faults and can only be removed after the corresponding leading fault has been removed with a debugging time lag. These models have been tested on real software error data to show its goodness of fit, predictive validity and applicability.展开更多
The first step in automatic supervision, condition monitoring and fault detection of photovoltaic system is recognition, exploration and classification of all possible faults that maybe happen in the system. This pape...The first step in automatic supervision, condition monitoring and fault detection of photovoltaic system is recognition, exploration and classification of all possible faults that maybe happen in the system. This paper aims to perceive, classified, simulate and discus all electrical faults in DC side of photovoltaic system, regarding electrical voltage and current inspections. For that, simplified hybrid model of photovoltaic panel in MATLAB environment is used. Investigation and classification of each type of faults is down and the effects of the faults are illustrated in this paper. Flash test are applied to improved electrical model. Current-Voltage curves signature are interpreted and investigated in simulation environment.展开更多
In this paper,a novel remaining useful life prediction approach considering fault effects is proposed.The Wiener process is used to construct the degradation process of single performance characteristic with the fault...In this paper,a novel remaining useful life prediction approach considering fault effects is proposed.The Wiener process is used to construct the degradation process of single performance characteristic with the fault effects.The first passage time based remaining useful life distribution is calculated by assuming fault occurrence moment is a random variable and follows a certain distribution.Expectation maximization algorithm is employed to estimate model parameters,where the fault occurrence moment is considered as a missing data.Finally,a Copula function is used to describe the dependence between the multiple performance characteristics and derive joint remaining useful life(RUL)distribution of product with the fault effects.The effectiveness of the proposed approach is verified by the experiments of turbofan engines.展开更多
The hazards of fault reactivation caused by fluid injection are a growing concern.However,traditional evaluation methods of fault stability are likely to underestimate the risk in fault segments with a high clay conte...The hazards of fault reactivation caused by fluid injection are a growing concern.However,traditional evaluation methods of fault stability are likely to underestimate the risk in fault segments with a high clay content.Therefore,an extended evaluation method of fault stability(ECPP)incorporating the heterogeneity in friction strength caused by variation in the clay content within the fault zone is established in this study.After characterizing the current stress field of the BZ34-2 Oilfield in the Huanghekou Sag,Bohai Bay Basin,the reactivation potential of faults is evaluated using both traditional and ECPP methods.Traditional evaluation of fault stability shows that all faults are stable in the present stress field.Faults oriented ENE have a relatively high risk.The maximum sustainable fluid pressure Δp is approximately 8.8-8.9 MPa and 9.3-9.9 MPa.When considering the heterogeneity in fault friction strength,the fault stability is clearly controlled by the clay content of the faults.The high-risk fault segments assessed using traditional methods are no longer obvious,which reflects the importance of incorporating friction strength heterogeneity in the process of fault evaluation.Moreover,the results also show that most fault segments are activated when the fault zone is dominated by montmorillonite,reflecting the strong influence of clay mineral types on fault stability.The factors influencing the heterogeneity of fault friction strength are very complicated in actual situations.Therefore,future work should focus on establishing a database through a large number of experiments and investigating the relationship between the friction coefficient and the main controlling factors.展开更多
The problem of sequential fault diagnosis is to construct a diagnosis tree that can isolate the failure sources with minimal test cost. Pervious sequential fault diagnosis strategy generating algorithms only consider ...The problem of sequential fault diagnosis is to construct a diagnosis tree that can isolate the failure sources with minimal test cost. Pervious sequential fault diagnosis strategy generating algorithms only consider the execution cost at application stage, which may result in a solution with poor quality from the view of life cycle cost. Furthermore, due to the fact that uncertain information exists extensively in the real-world systems, the tests are always imperfect. In order to reduce the cost of fault diagnosis in the realistic systems, the sequential fault diagnosis problem with imperfect tests considering life cycle cost is presented and formulated in this work, which is an intractable NP-hard AND/OR decision tree construction problem. An algorithm based on AND/OR graph search is proposed to solve this problem. Heuristic search based on information theory is applied to generate the sub-tree in the algorithm. Some practical issues such as the method to improve the computational efficiency and the diagnosis strategy with multi-outcome tests are discussed. The algorithm is tested and compared with previous algorithms on the simulated systems with different scales and uncertainty. Application on a wheel momentum system of a spacecraft is studied in detail. Both the simulation and application results suggest that the cost of the diagnosis strategy can be reduced significantly by using the proposed algorithm, especially when the placement cost of the tests constitutes a large part of the total cost.展开更多
Based on comparative analysis on hydrochemical characteristics of geothermal water in the north part of Liaokao fault,this research focuses on studying the indicative significance of hydrochemical characteristics for ...Based on comparative analysis on hydrochemical characteristics of geothermal water in the north part of Liaokao fault,this research focuses on studying the indicative significance of hydrochemical characteristics for the formation of geothermal water.The result shows that:(1)There is no obvious hydraulic connection between the karst geothermal water(occurred in the east part of the Liaokao fault)and the sandstone geothermal water(occurred in the west part of Liaokao fault).(2)In a close hydrological environment,caused by tectonic activities,geothermal water remains longer time in reservoir,hence the water-rock interaction is more complete,with high degree of concentrations,whereas the renewable capacity of the water is weaker.(3)There is no high temperature mantle source fluid mixed in the geothermal water.Karst geothermal water occurred deep circulatory convection along Liaokao fault and its secondary fault,therefore there is deep crust source fluid added into the geothermal water,closer to the Liaokao fault,the greater affected by the deep crust fluid.However,sandstone geothermal water has weak deep circulatory convection.展开更多
In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line select...In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.展开更多
:A new accurate algorithms based on mathematical modeling of two parallel transmissions lines system(TPTLS)as influenced by the mutual effect to determine the fault location is discussed in this work.The distance rela...:A new accurate algorithms based on mathematical modeling of two parallel transmissions lines system(TPTLS)as influenced by the mutual effect to determine the fault location is discussed in this work.The distance relay measures the impedance to the fault location which is the positive-sequence.The principle of summation the positive-,negative-,and zero-sequence voltages which equal zero is used to determine the fault location on the TPTLS.Also,the impedance of the transmission line to the fault location is determined.These algorithms are applied to single-line-to-ground(SLG)and double-line-to-ground(DLG)faults.To detect the fault location along the transmission line,its impedance as seen by the distance relay is determined to indicate if the fault is within the relay’s reach area.TPTLS under study are fed from one-and both-ends.A schematic diagrams are obtained for the impedance relays to determine the fault location with high accuracy.展开更多
The diode rectifier unit(DRU)-based high-voltage DC(DRU-HVDC) system is a promising solution for offshore wind energy transmission thanks to its compact design, high efficiency, and strong reliability. Herein we inves...The diode rectifier unit(DRU)-based high-voltage DC(DRU-HVDC) system is a promising solution for offshore wind energy transmission thanks to its compact design, high efficiency, and strong reliability. Herein we investigate the feasibility of the DRU-HVDC system considering onshore and offshore AC grid faults, DC cable faults, and internal DRU faults. To ensure safe operation during the faults, the wind turbine(WT) converters are designed to operate in either current-limiting or voltage-limiting mode to limit potential excessive overcurrent or overvoltage. Strategies for providing fault currents using WT converters during offshore AC faults to enable offshore overcurrent and differential fault protection are investigated. The DRU-HVDC system is robust against various faults, and it can automatically restore power transmission after fault isolation. Simulation results confirm the system performance under various fault conditions.展开更多
The Tula A2-subtype granite pluton is located between the Altun fault and its branching fault. According to the geological, geochemical, REE and trace elements characteristics, it belongs to the A2 (PA) subtype gran...The Tula A2-subtype granite pluton is located between the Altun fault and its branching fault. According to the geological, geochemical, REE and trace elements characteristics, it belongs to the A2 (PA) subtype granite. The SHRIMP U-Pb zircon dating gives a result of 385.2±8.1 Ma, which is located between the Middle and Late Devonian in the international stratigraphic chart, and can be regarded as the crystallization age of the Tula granite. The study indicates that the Tula area was in a local extensional environment in the end of the Middle Devonian, and that environment was probably related to the synchronized strike-slip activity of the Altun fault.展开更多
The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depr...The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depression in the Bohai Bay Basin as an example.Based on 3D seismic data and the distribution of oil and water,the controlling differences between consequent fault and antithetic fault were analyzed and compared from the formation and evolution rule of faults and the formation mechanism of fault traps,including development positions of the consequent fault traps and antithetic fault traps,oil and gas distribution horizon adjusted by fault and formation period of fault traps.The differences between consequent faults and antithetic faults in controlling reservoirs have three main aspects:(1)Consequent fault traps and antithetic fault traps are in different positions,the consequent fault traps are at the segmented growing point in the hanging wall of"hard-linkage"faults,while the antithetic fault traps are developed in the position with the largest throw in the footwall because of tilting action;(2)The two kinds of faults result in different oil and gas distribution vertically,oil and gas adjusted by consequent faults is distributed in a single layer or multi-layers,while oil and gas adjusted by antithetic faults occur in single layers;(3)The two kinds of fault traps are formed in different periods,the consequent fault traps are formed at the time when the related faults enter the stage of"hard-linkage",while the antithetic fault traps are formed at the beginning of the fault active period.展开更多
In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogene...In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogeneous Poisson process(NHPP),and it is proved that the prediction accuracy of such models could be improved by adding the describing of characterization of testing effort.However,some research work indicates that the fault detection rate(FDR) is another key factor affects final software quality.Most early NHPPbased models deal with the FDR as constant or piecewise function,which does not fit the different testing stages well.Thus,this paper first incorporates a multivariate function of FDR,which is bathtub-shaped,into the NHPP-based SRGMs considering testing effort in order to further improve performance.A new model framework is proposed,and a stepwise method is used to apply the framework with real data sets to find the optimal model.Experimental studies show that the obtained new model can provide better performance of fitting and prediction compared with other traditional SRGMs.展开更多
The Red River Fault Zone is a gigantic slide-slip fault zone extending up to 1000km from Tibet to SouthChina Sea. It has been divided into the north, central and south segments according to the difference of thegeomet...The Red River Fault Zone is a gigantic slide-slip fault zone extending up to 1000km from Tibet to SouthChina Sea. It has been divided into the north, central and south segments according to the difference of thegeometry, kinetics, and seismicity on the land, but according to the contacted relationship between the old pre-Cenozoic block in Indochina Peninsula and the South China block, the Red River Fault Zone was divided into two parts extending from land to ocean, the north and south segments. Since the Tertiary, the Red River Fault Zone suffered first the sinistral movement and then the dextral movement. The activities of the north and the south segments were different. Based on the analysis of earthquakes and focal mechanism solutions,earthquakes with the focus depths of 0-33km are distributed over the whole region and more deep earthquakes are distributed on the northeastern sides of the Red River fault. Types of faulting activities are the thrust in the northwest, the normal in the north and the strike-slip in the south, with the odd type, viz. the transition type, in the other region. These show the Red River Fault Zone and its adjacent region suffered the extruding force in NNW direction and the normal stress in NEE direction and it makes the fault in the region extrude-thrust,horizontal strike-slip and extensional normal movement.展开更多
文摘Most outbursts of gas and coal occur along geological structural zones during mining. Recent research revealed that most outbursts occurred on the downthrow sides of faults, and the key reason is that the outburst coal,often known as tectonic coal or soft coal, mainly exists on the downthrow wall of faults-hanging of normal faults or footwall of reverse faults. This paper will mainly discuss the outburst prone on different sides of faults and its causes.
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
基金supported partially by NationalNatural Science Foundation of China(NSFC)(No.U21A20146)Collaborative Innovation Project of Anhui Universities(No.GXXT-2020-070)+8 种基金Cooperation Project of Anhui Future Technology Research Institute and Enterprise(No.2023qyhz32)Development of a New Dynamic Life Prediction Technology for Energy Storage Batteries(No.KH10003598)Opening Project of Key Laboratory of Electric Drive and Control of Anhui Province(No.DQKJ202304)Anhui Provincial Department of Education New Era Education Quality Project(No.2023dshwyx019)Special Fund for Collaborative Innovation between Anhui Polytechnic University and Jiujiang District(No.2022cyxtb10)Key Research and Development Program of Wuhu City(No.2022yf42)Open Research Fund of Anhui Key Laboratory of Detection Technology and Energy Saving Devices(No.JCKJ2021B06)Anhui Provincial Graduate Student Innovation and Entrepreneurship Practice Project(No.2022cxcysj123)Key Scientific Research Project for Anhui Universities(No.2022AH050981).
文摘Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset.
基金supported by National Key R&D Program of China(2019YFB2103202).
文摘Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics of edge networks,such as limited resources,complex network faults,and the need for high real-time performance,enhancing and optimizing existing network fault diagnosis methods is necessary.Therefore,this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network(LSNN).Firstly,we use the Izhikevich neurons model to replace the Leaky Integrate and Fire(LIF)neurons model in the LSNN model.Izhikevich neurons inherit the simplicity of LIF neurons but also possess richer behavioral characteristics and flexibility to handle diverse data inputs.Inspired by Fast Spiking Interneurons(FSIs)with a high-frequency firing pattern,we use the parameters of FSIs.Secondly,inspired by the connection mode based on spiking dynamics in the basal ganglia(BG)area of the brain,we propose the pruning approach based on the FSIs of the BG in LSNN to improve computational efficiency and reduce the demand for computing resources and energy consumption.Furthermore,we propose a multiple iterative Dynamic Spike Timing Dependent Plasticity(DSTDP)algorithm to enhance the accuracy of the LSNN model.Experiments on two server fault datasets demonstrate significant precision,recall,and F1 improvements across three diagnosis dimensions.Simultaneously,lightweight indicators such as Params and FLOPs significantly reduced,showcasing the LSNN’s advanced performance and model efficiency.To conclude,experiment results on a pair of datasets indicate that the LSNN model surpasses traditional models and achieves cutting-edge outcomes in network fault diagnosis tasks.
基金supported by Shanghai Rising-Star Program(No.22QA1403900)the National Natural Science Foundation of China(No.71804106)the Noncarbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program.
文摘Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method.
文摘Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, however, low-frequency GPR survey to investigate fault-related depositional systems at greater depths. The Quinta-Cassino area in the Rio Grande do Sul Coastal Plain (RGSCP, Brazil) shows a wide strandplain that is made off by very long, continuous, and linear geomorphic features (beach ridges). This strandplain extends for ~70 km southward. The beach ridges show low-angle truncations against the Quinta escarpment, and also truncations in the strandplain. The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;previous model assumes that no deformational episode occurred in RGSCP. The geophysical and geological surveys carried out in this area showed the existence of listric fault controlling the beach ridges in the escarpments and hanging-wall blocks. The radargrams could distinguish Pleistocene basement unit anticlockwise rotation, thickening of beach ridges radarfacies close to listric normal faults, and horst structures. These deformational features indicate that the extensional zone of a large-scale gravity-driven structure controlled the mechanical subsidence, the Holocene sedimentation and its stratigraphic and geomorphic features in the Quinta-Cassino area to build up an asymmetric delta. The results point to a new approach in dealing with RGSCP Holocene evolution.
基金supported by the National Natural Science Foundation of China(6140321061601228+3 种基金61603191)the Natural Science Foundation of Jiangsu(BK20161021)the Nanjing University of Posts and Telecommunications Science Foundation(NY214173)the Open Program of Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing(3DL201607)
文摘A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backstepping with the sliding mode control strategy could guarantee the system’s stability and track desired signals under external disturbances and engine faults. Firstly, attitude mode description and the engine faulty model are given. Secondly, a nominal control law is designed.Thirdly, a sliding mode observer is given later in order to estimate both the information of engine faults and external disturbances. An adaptive sliding mode technology based on the previous nominal control law is developed via updating faulty parameters. Finally,analyze the system’s fault-tolerant performance and reliability through experiment simulation, which verifies the proposed design of fault-tolerant control can tolerate engine faults, as well as the strong robustness for external disturbance.
文摘Since the early 1970s tremendous growth has been seen in the research of software reliability growth modeling. In general, software reliability growth models (SRGMs) are applicable to the late stages of testing in software development and they can provide useful information about how to improve the reliability of software products. A number of SRGMs have been proposed in the literature to represent time-dependent fault identification / removal phenomenon; still new models are being proposed that could fit a greater number of reliability growth curves. Often, it is assumed that detected faults are immediately corrected when mathematical models are developed. This assumption may not be realistic in practice because the time to remove a detected fault depends on the complexity of the fault, the skill and experience of the personnel, the size of the debugging team, the technique, and so on. Thus, the detected fault need not be immediately removed, and it may lag the fault detection process by a delay effect factor. In this paper, we first review how different software reliability growth models have been developed, where fault detection process is dependent not only on the number of residual fault content but also on the testing time, and see how these models can be reinterpreted as the delayed fault detection model by using a delay effect factor. Based on the power function of the testing time concept, we propose four new SRGMs that assume the presence of two types of faults in the software: leading and dependent faults. Leading faults are those that can be removed upon a failure being observed. However, dependent faults are masked by leading faults and can only be removed after the corresponding leading fault has been removed with a debugging time lag. These models have been tested on real software error data to show its goodness of fit, predictive validity and applicability.
文摘The first step in automatic supervision, condition monitoring and fault detection of photovoltaic system is recognition, exploration and classification of all possible faults that maybe happen in the system. This paper aims to perceive, classified, simulate and discus all electrical faults in DC side of photovoltaic system, regarding electrical voltage and current inspections. For that, simplified hybrid model of photovoltaic panel in MATLAB environment is used. Investigation and classification of each type of faults is down and the effects of the faults are illustrated in this paper. Flash test are applied to improved electrical model. Current-Voltage curves signature are interpreted and investigated in simulation environment.
基金supported by General Program of National Natural Science Foundation of China(61773080)China Central Universities Foundation(2019CDYGZD001)+1 种基金Scientific Reserve Talent Programs of Chongqing University(cqu2018CDHB1B04)Graduate Research and Innovation Foundation of Chongqing(CYB20065)。
文摘In this paper,a novel remaining useful life prediction approach considering fault effects is proposed.The Wiener process is used to construct the degradation process of single performance characteristic with the fault effects.The first passage time based remaining useful life distribution is calculated by assuming fault occurrence moment is a random variable and follows a certain distribution.Expectation maximization algorithm is employed to estimate model parameters,where the fault occurrence moment is considered as a missing data.Finally,a Copula function is used to describe the dependence between the multiple performance characteristics and derive joint remaining useful life(RUL)distribution of product with the fault effects.The effectiveness of the proposed approach is verified by the experiments of turbofan engines.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.42002152 and U20A2093)National Key Research and Development Program of China(Grant No.2022YFE0206800).
文摘The hazards of fault reactivation caused by fluid injection are a growing concern.However,traditional evaluation methods of fault stability are likely to underestimate the risk in fault segments with a high clay content.Therefore,an extended evaluation method of fault stability(ECPP)incorporating the heterogeneity in friction strength caused by variation in the clay content within the fault zone is established in this study.After characterizing the current stress field of the BZ34-2 Oilfield in the Huanghekou Sag,Bohai Bay Basin,the reactivation potential of faults is evaluated using both traditional and ECPP methods.Traditional evaluation of fault stability shows that all faults are stable in the present stress field.Faults oriented ENE have a relatively high risk.The maximum sustainable fluid pressure Δp is approximately 8.8-8.9 MPa and 9.3-9.9 MPa.When considering the heterogeneity in fault friction strength,the fault stability is clearly controlled by the clay content of the faults.The high-risk fault segments assessed using traditional methods are no longer obvious,which reflects the importance of incorporating friction strength heterogeneity in the process of fault evaluation.Moreover,the results also show that most fault segments are activated when the fault zone is dominated by montmorillonite,reflecting the strong influence of clay mineral types on fault stability.The factors influencing the heterogeneity of fault friction strength are very complicated in actual situations.Therefore,future work should focus on establishing a database through a large number of experiments and investigating the relationship between the friction coefficient and the main controlling factors.
基金Project(C1320063131)supported by China Civil Space Foundation
文摘The problem of sequential fault diagnosis is to construct a diagnosis tree that can isolate the failure sources with minimal test cost. Pervious sequential fault diagnosis strategy generating algorithms only consider the execution cost at application stage, which may result in a solution with poor quality from the view of life cycle cost. Furthermore, due to the fact that uncertain information exists extensively in the real-world systems, the tests are always imperfect. In order to reduce the cost of fault diagnosis in the realistic systems, the sequential fault diagnosis problem with imperfect tests considering life cycle cost is presented and formulated in this work, which is an intractable NP-hard AND/OR decision tree construction problem. An algorithm based on AND/OR graph search is proposed to solve this problem. Heuristic search based on information theory is applied to generate the sub-tree in the algorithm. Some practical issues such as the method to improve the computational efficiency and the diagnosis strategy with multi-outcome tests are discussed. The algorithm is tested and compared with previous algorithms on the simulated systems with different scales and uncertainty. Application on a wheel momentum system of a spacecraft is studied in detail. Both the simulation and application results suggest that the cost of the diagnosis strategy can be reduced significantly by using the proposed algorithm, especially when the placement cost of the tests constitutes a large part of the total cost.
基金This research was financially supported by China Geological Survey Project(DD20189114,DD20190129)the Basic Scientific Research Project of the Chinese Academy of Geological Sciences(JKY1722,YWF201903-01 and JYYWF20180501).
文摘Based on comparative analysis on hydrochemical characteristics of geothermal water in the north part of Liaokao fault,this research focuses on studying the indicative significance of hydrochemical characteristics for the formation of geothermal water.The result shows that:(1)There is no obvious hydraulic connection between the karst geothermal water(occurred in the east part of the Liaokao fault)and the sandstone geothermal water(occurred in the west part of Liaokao fault).(2)In a close hydrological environment,caused by tectonic activities,geothermal water remains longer time in reservoir,hence the water-rock interaction is more complete,with high degree of concentrations,whereas the renewable capacity of the water is weaker.(3)There is no high temperature mantle source fluid mixed in the geothermal water.Karst geothermal water occurred deep circulatory convection along Liaokao fault and its secondary fault,therefore there is deep crust source fluid added into the geothermal water,closer to the Liaokao fault,the greater affected by the deep crust fluid.However,sandstone geothermal water has weak deep circulatory convection.
文摘In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.
文摘:A new accurate algorithms based on mathematical modeling of two parallel transmissions lines system(TPTLS)as influenced by the mutual effect to determine the fault location is discussed in this work.The distance relay measures the impedance to the fault location which is the positive-sequence.The principle of summation the positive-,negative-,and zero-sequence voltages which equal zero is used to determine the fault location on the TPTLS.Also,the impedance of the transmission line to the fault location is determined.These algorithms are applied to single-line-to-ground(SLG)and double-line-to-ground(DLG)faults.To detect the fault location along the transmission line,its impedance as seen by the distance relay is determined to indicate if the fault is within the relay’s reach area.TPTLS under study are fed from one-and both-ends.A schematic diagrams are obtained for the impedance relays to determine the fault location with high accuracy.
基金supported in part by the European Union’s Horizon 2020 research and innovation program under grant agreement No.691714
文摘The diode rectifier unit(DRU)-based high-voltage DC(DRU-HVDC) system is a promising solution for offshore wind energy transmission thanks to its compact design, high efficiency, and strong reliability. Herein we investigate the feasibility of the DRU-HVDC system considering onshore and offshore AC grid faults, DC cable faults, and internal DRU faults. To ensure safe operation during the faults, the wind turbine(WT) converters are designed to operate in either current-limiting or voltage-limiting mode to limit potential excessive overcurrent or overvoltage. Strategies for providing fault currents using WT converters during offshore AC faults to enable offshore overcurrent and differential fault protection are investigated. The DRU-HVDC system is robust against various faults, and it can automatically restore power transmission after fault isolation. Simulation results confirm the system performance under various fault conditions.
文摘The Tula A2-subtype granite pluton is located between the Altun fault and its branching fault. According to the geological, geochemical, REE and trace elements characteristics, it belongs to the A2 (PA) subtype granite. The SHRIMP U-Pb zircon dating gives a result of 385.2±8.1 Ma, which is located between the Middle and Late Devonian in the international stratigraphic chart, and can be regarded as the crystallization age of the Tula granite. The study indicates that the Tula area was in a local extensional environment in the end of the Middle Devonian, and that environment was probably related to the synchronized strike-slip activity of the Altun fault.
基金Supported by the National Natural Science Foundation of China(41602129,41602164)China National Science and Technology Major Project(2016ZX05007003,2016ZX05006-005)
文摘The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depression in the Bohai Bay Basin as an example.Based on 3D seismic data and the distribution of oil and water,the controlling differences between consequent fault and antithetic fault were analyzed and compared from the formation and evolution rule of faults and the formation mechanism of fault traps,including development positions of the consequent fault traps and antithetic fault traps,oil and gas distribution horizon adjusted by fault and formation period of fault traps.The differences between consequent faults and antithetic faults in controlling reservoirs have three main aspects:(1)Consequent fault traps and antithetic fault traps are in different positions,the consequent fault traps are at the segmented growing point in the hanging wall of"hard-linkage"faults,while the antithetic fault traps are developed in the position with the largest throw in the footwall because of tilting action;(2)The two kinds of faults result in different oil and gas distribution vertically,oil and gas adjusted by consequent faults is distributed in a single layer or multi-layers,while oil and gas adjusted by antithetic faults occur in single layers;(3)The two kinds of fault traps are formed in different periods,the consequent fault traps are formed at the time when the related faults enter the stage of"hard-linkage",while the antithetic fault traps are formed at the beginning of the fault active period.
基金supported by the National Natural Science Foundation of China(61070220)the Anhui Provincial Natural Science Foundation(1408085MKL79)
文摘In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogeneous Poisson process(NHPP),and it is proved that the prediction accuracy of such models could be improved by adding the describing of characterization of testing effort.However,some research work indicates that the fault detection rate(FDR) is another key factor affects final software quality.Most early NHPPbased models deal with the FDR as constant or piecewise function,which does not fit the different testing stages well.Thus,this paper first incorporates a multivariate function of FDR,which is bathtub-shaped,into the NHPP-based SRGMs considering testing effort in order to further improve performance.A new model framework is proposed,and a stepwise method is used to apply the framework with real data sets to find the optimal model.Experimental studies show that the obtained new model can provide better performance of fitting and prediction compared with other traditional SRGMs.
基金supported by the Chinese Academy of Sciences(Project No.KZCX2-209-01)National Science Foundation(Project No.40276015)Guangdong Province Science Foundation(Project No.021561).
文摘The Red River Fault Zone is a gigantic slide-slip fault zone extending up to 1000km from Tibet to SouthChina Sea. It has been divided into the north, central and south segments according to the difference of thegeometry, kinetics, and seismicity on the land, but according to the contacted relationship between the old pre-Cenozoic block in Indochina Peninsula and the South China block, the Red River Fault Zone was divided into two parts extending from land to ocean, the north and south segments. Since the Tertiary, the Red River Fault Zone suffered first the sinistral movement and then the dextral movement. The activities of the north and the south segments were different. Based on the analysis of earthquakes and focal mechanism solutions,earthquakes with the focus depths of 0-33km are distributed over the whole region and more deep earthquakes are distributed on the northeastern sides of the Red River fault. Types of faulting activities are the thrust in the northwest, the normal in the north and the strike-slip in the south, with the odd type, viz. the transition type, in the other region. These show the Red River Fault Zone and its adjacent region suffered the extruding force in NNW direction and the normal stress in NEE direction and it makes the fault in the region extrude-thrust,horizontal strike-slip and extensional normal movement.