Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthqu...Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthquake. In this paper, a three-dimensional normal fault sliding device was designed, and a shaking table test was carried out to study tunnel seismic performance under normal fault slip. The results show that peak acceleration of lining is dominated by an existence of fault and direction of seismic excitation, not normal fault slip. And the incremental strains of lining in critical zone with 1.7 times fault thickness and centered in faults induced by normal fault slip and seismic excitation are larger than ones only by seismic excitation. And the incremental strains in critical zone increase with the increase of normal fault slip magnitude ranging from 0 to 2 mm. And normal fault slip results in a significant reduction of overall tunnel stiffness subjected to an earthquake. These experimental results provide a scientific reference for prevention and control measurement of tunnel damage under earthquake and normal fault slip.展开更多
The Hori's inverse method based on spectral decomposition was applied to estimate coseismic slip distribution on the rupture plane of the 14 November 2001 Ms8.1 Kunlun earthquake based on GPS survey results. The inve...The Hori's inverse method based on spectral decomposition was applied to estimate coseismic slip distribution on the rupture plane of the 14 November 2001 Ms8.1 Kunlun earthquake based on GPS survey results. The inversion result shows that the six sliding models can be constrained by the coseismic GPS data. The established slips mainly concentrated along the eastern segment of the fault rupture, and the maximum magnitude is about 7 m. Slip on the eastern segment of the fault rupture represents as purely left-lateral strike-slip. Slip on the western segment of the seismic rupture represents as mainly dip-stip with the maximum dip-slip about 1 m. Total predicted scalar seismic moment is 5.196× 10^2° N.m. Our results constrained by geodetic data are consistent with seismological results.展开更多
On August 8,2017,an M_(W)6.5 earthquake occurred in Jiuzhaigou County,Sichuan Province,China,on the eastern margin of the Qinghai-Tibet Plateau.This study investigates the coseismic deformation field and fault model w...On August 8,2017,an M_(W)6.5 earthquake occurred in Jiuzhaigou County,Sichuan Province,China,on the eastern margin of the Qinghai-Tibet Plateau.This study investigates the coseismic deformation field and fault model with ascending and descending Sentinel-1 synthetic aperture radar(SAR)images,aftershock distribution,and elastic half-space dislocation model.The regional fault slip pattern is then quantita-tively examined using the boundary element method.The results show that the ascending and descending interferometric synthetic aperture radar(InSAR)coseismic deformation fields display an overall NNW-SSE trend,with more significant deformation on the southwest side of the fault.The coseismic fault geometry is divided into NW and SE sub-faults with strikes of 162.1°and 149.3°,respectively.The coseismic fault slip is dominated by a left-lateral strike-slip movement with an average rake of-2.31°,mainly occurring at a depth of 0-13.04 km with a shape of an approximately inverted triangle.The fault slip features two peak slip zones,with a maximum of 1.39 m.The total seismic moment is 6.34×10^(18) N·m(M_(W)6.47).The boundary element calculation quantitatively indicates that the regional fault slip pattern may be mainly attributable to the changing strike and dip.The strike changes from NNWeSSE to nearly NS direction,and the dip gradually decreases from the Jiuzhaigou earthquake fault in the north to the Huya fault in the south.With these characteristics,the Huya and the Jiuzhaigou earthquake faults form the eastern boundary of the Minshan uplift zone and accommodate the accumulated deformation.展开更多
Based on the collection of active fault slip rate data of large intra-continental shallow thrust earthquakes occurring in the triangular seismic region of the East Asia continent,a preliminary analysis has been perfor...Based on the collection of active fault slip rate data of large intra-continental shallow thrust earthquakes occurring in the triangular seismic region of the East Asia continent,a preliminary analysis has been performed with results showing that the Wenchuan,Sichuan, China earthquake ( MS = 8.0) of May 12,2008 occurred on the Longmenshan Mountain active fault with an abnormally low slip rate.展开更多
A graphical method for determining the principal stress distribution of a triaxial stress state from a fault slipstate was proposed by Aleksandrowski in 1985,based on Arthaud′s concept of plane movement,Alek-sandrow...A graphical method for determining the principal stress distribution of a triaxial stress state from a fault slipstate was proposed by Aleksandrowski in 1985,based on Arthaud′s concept of plane movement,Alek-sandrowski′s method,however,is only valid for the cases in which the values of the stress ratios(C)are consid-ered 1o be ,10,2,1.1 and 1.Whether the method is applicable for general cases of all values of C has not yetbeen confirmed.In this paper.Aleksandrowskis′ method is tested using a numerical derivation from spatialgeometric analysis,and it is revealed that this method is correct for all values of stress ratios other than C=,10,2,1.1,and 1,i.c-【C【.展开更多
Offset geomorphic features and deformed late Quaternary strata indicate active deformation along the Langshan-Seertengshan piedmont fault (LSPF), one of the most active faults in the Hetao fault zone in Inner Mongol...Offset geomorphic features and deformed late Quaternary strata indicate active deformation along the Langshan-Seertengshan piedmont fault (LSPF), one of the most active faults in the Hetao fault zone in Inner Mongolia, North China. The widespread occurrence of bedrock fault scarps along the LSPF offers excellent opportunity to examine the faulting history. Using cosmogenic ^10Be exposure dating, we measured the exposure ages of the western Langshankou scarp, located in the middle segment of the LSPF. Our data revealed at least two earthquakes that occurred at 22.2±3.3 Ira and 7.2±2.4 ka, respectively. These events are consistent with previous paleoseismic trench studies. The regression of the relationship between the age and sampling height along the scarp yield a fault slip rate of 0.10 ±0.05/-0.06 mm/yr, which is significantly lower than the average post-late Pleistocene fault slip rate of ~1 mm/yr, as estimated from the offset of the T2 terraces by previous studies. This indicates that the slip of the LSPF may have been accommodated by other fault branches.展开更多
In this article,a method to determine the complete stress tensor by use of fault slip data in combination with experimental parameters of rock mechanics is elucidated;the direction and magnitude of recent tectonic str...In this article,a method to determine the complete stress tensor by use of fault slip data in combination with experimental parameters of rock mechanics is elucidated;the direction and magnitude of recent tectonic stress in the Xianshuihe fault zone are determined by this method from a great deal of active fault striae data observed in the fault zone and the envelope of rock fracture determined experimentally for rock samples collected from the fault zone;and the applicability of the method and reliability of calculation results are discussed.展开更多
An unusual increase in seismicity rate near the development and production sites of unconventional energy(e.g.,natural gas and geothermal fluids)has been attributed to subsurface fluid injection.Damaging and hazardous...An unusual increase in seismicity rate near the development and production sites of unconventional energy(e.g.,natural gas and geothermal fluids)has been attributed to subsurface fluid injection.Damaging and hazardous earthquakes in many countries(e.g.,China,South Korea,and the United States)have motivated tremendous effort to understand the complexity of fault slip behaviors in response to fluid pressurization.This study reviews key characteristics of injection-induced fault slip and highlights prediction and mitigation strategies relevant to unconventional energy projects.This capability relies on adequate understanding and characterization of first-and second-order friction and stability behaviors of faults as well as impacts of fluid pressurization and its role in triggering aseismic,seismic,and transitional slip behaviors.Suitable methods of investigation and characterization are noted together with typical examples together with scientific advances in our understanding towards forewarning and mitigation.Present challenges are addressed relating to the understanding of complex secondorder friction behaviors and the location and characterization of blind faults.These needs are aided in the integration of multi-scale and multi-physical data obtained from laboratory,numerical,and field studies to offer crucial information for induced hazard preparedness and rapid run-up assessment.Finally,emerging technologies contributing to an improved understanding,such as data analytics and machine learning,are discussed in heralding the next frontier for injection-induced seismicity research.展开更多
With the more complete acoustic emission(AE)catalog improved by the multi-channel AE matched-filter technique(MFT),we study the spatiotemporal evolution of the AE activities after laboratory stick-slip events incorpor...With the more complete acoustic emission(AE)catalog improved by the multi-channel AE matched-filter technique(MFT),we study the spatiotemporal evolution of the AE activities after laboratory stick-slip events incorporate with the slip data recorded by displacement transducers on an^1.5 m granite fault.The results show that the number of the AE events identified by MFT is about 9 times larger than that of the traditional method.A logarithmic expansion of early AE events along the fault strike is observed as a function of time,whereas the fault does not slip in the same manner.Thus,we related the expansion of the early AE events along the fault to the stress transfer caused by the adjacent AE events.Moreover,there is a good correlation between the cumulative number of the later AE events and the amount of fault slip.It suggests that the stress change caused by the continuous slip of the simulated fault after the stick-slip events response for the later AE events near or on the simulated fault.展开更多
The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight...The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight Ms ≥ 7.0 earthquakes. The seismic risk of the Xianshuihe fault zone is a large and realistic threat to the western Sichuan economic corridor. Based on previous studies, we carried out field geological survey and remote sensing interpretation in the fault zone. In addition, geophysical surveys, trenching and age-dating were conducted in the key parts to better understand the geometry, spatial distribution and activity of the fault zone. We infer to divide the fault zone into two parts: the northwest part and the southeast part, with total eight segments. Their Late Quaternary slip rates vary in a range of 11.5 mm/a –(3±1) mm/a. The seismic activities of the Xianshuihe fault zone are frequent and strong, periodical, and reoccurred. Combining the spatial and temporal distribution of the historical earthquakes, the seismic hazard of the Xianshuihe fault zone has been predicted by using the relationship between magnitude and frequency of earthquakes caused by different fault segments. The prediction results show that the segment between Daofu and Qianning has a possibility of Ms ≥ 7.0 earthquakes, while the segment between Shimian and Luding is likely to have earthquakes of about Ms 7.0. It is suggested to establish a GPS or In SAR-based real-time monitoring network of surface displacement to cover the Xianshuihe fault zone, and an early warning system of earthquakes and post seismic geohazards to cover the major residential areas.展开更多
Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of ...Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of a large conjugate strike-slip fault system from the intracratonic Tarim Basin, NW China. Within our study area, "X" type NE and NW trending faults occur within Cambrian- Ordovician carbonates. The dihedral angles of these conjugate faults have narrow ranges, 19~ to 62~ in the Cambrian and 26~ to 51~ in the Ordovician, and their modes are 42~ and 44~ respectively. These data are significantly different from the ~60~ predicted by the Coulomb fracture criterion. It is concluded that: (1) The dihedral angles of the conjugate faults were not controlled by confining pressure, which was low and associated with shallow burial; (2) As dihedral angles were not controlled by pressure they can be used to determine the shortening direction during faulting; (3) Sequential slip may have played an important role in forming conjugate fault intersections; (4) The conjugate fault system of the Tarim basin initiated as rhombic joints; these subsequently developed into sequentially active "X" type conjugate faults; followed by preferential development of the NW-trending faults; then reactivation of the NE trending faults. This intact rhombic conjugate fault system presents new insights into mechanisms of dihedral angle development, with particular relevance to intracratonic basins.展开更多
针对2021年5月22日青海玛多县Ms7.4地震震区形变信息、形变特征以及滑动断裂特性的提取与模拟等问题,获取了玛多县地震区的Sentinel-1A影像,采用双轨差分干涉法,并优化各项参数,提取出同震形变场,利用slipBERI(slip from bayesian regul...针对2021年5月22日青海玛多县Ms7.4地震震区形变信息、形变特征以及滑动断裂特性的提取与模拟等问题,获取了玛多县地震区的Sentinel-1A影像,采用双轨差分干涉法,并优化各项参数,提取出同震形变场,利用slipBERI(slip from bayesian regularized inversion)方法对断层的几何参数及形变场进行反演和模拟。结果表明:玛多地震同震形变场的形状近似于一个椭圆,断层整体呈西北-东南走向,其上部为沉降区,下部为隆升区,最大视线向(line of sight,LOS)形变分别为0.65 m和0.81 m。地震形变场的运动主要以东西方向的水平运动为主,并伴有明显的左旋走滑,断层上下方相对视线向运动可达1.50 m,表明此次地震的地表破裂有明显的错位移动。通过分析形变信息和地表破裂特征,可以判断该破裂带位于巴颜喀拉块体,为昆仑山口-江口断裂,反演结果与观测结果相符,这表明观测结果较可靠。展开更多
In the present study, methodologies to evaluate damage around an underground opening due to seismic waves arising from mining-induced fault-slip are examined. First, expressions for an associated flow rule with a fail...In the present study, methodologies to evaluate damage around an underground opening due to seismic waves arising from mining-induced fault-slip are examined. First, expressions for an associated flow rule with a failure criterion are developed for biaxial stress conditions, which are implemented into FLAC3D code. A three-dimensional(3D) mine model encompassing a fault running parallel to a steeply dipping orebody is constructed, whereby static and dynamic analyses are performed to extract stopes and simulate fault-slip in dynamic condition, respectively. In the analysis, the developed biaxial model is applied to the stope wall. The fault-slip simulation is performed, considering shearing of fault surface asperities and resultant stress drop driving the fault-slip. Two methodologies to evaluate damage caused by seismic waves arising from the simulated fault-slip are examined:(i) the ratio of dynamic plastic strain increment to elastic strain limit and(ii) plastic strain energy density. For the former one, two types of strain increments are tested, namely effective shear strain increment and volumetric strain increment.The results indicate that volumetric strain increment is a suitable index for detecting damage near the stope wall, while effective shear strain increment is appropriate for evaluating damage in backfill. The evaluation method with plastic strain energy density is found to be capable of assessing damage accumulated in an extensive area caused by rock mass oscillation due to seismic wave propagation. Possible damage to mine developments in the proximity of a stope is clearly described with the index. The comparison of the two methods clarifies that the former one assesses "instantaneous" damage, which is found to be different from "accumulated" damage calculated using plastic strain energy density, in terms of damage area and its location. It is thus concluded that the combination of the two methodologies leads to more accurate damage assessment as a proper measure against rockburst.展开更多
The structural analysis based on the explanation of seismic profiles indicates that a lot of thrust faults and strike-slip faults of Late Cenozoic occur in western Hexi Corridor and its nearby regions. They can be di...The structural analysis based on the explanation of seismic profiles indicates that a lot of thrust faults and strike-slip faults of Late Cenozoic occur in western Hexi Corridor and its nearby regions. They can be divided into two types. One is thrust faults dipping southwards and extending NWwards, which was mainly correlated with the thrusting of northern Qilianshan and located at the NE margin of Qilianshan and the southwestern Hexi Corridor, the other is thrust faults and strike-slip faults that were related to the strike-slipping of Altun fault and located mainly at the regions of Hongliuxia, Kuantaishan, and Helishan that are close to the Altun fault. All these faults, which were related to the remote effects of collision between the two continents of India and Tibet during the Late Eocene and later, started to develop since the Late Tertiary and presented the features of violent thrust or strike-slip movement in Quaternary. Many of them are still active up to now and thus belong to the active faults that are the potential inducement of earthquakes in the Hexi Corridor. Moreover, a lot of intense structural deformation and many morphology phenomena such as tectonic terrace and river offset were formed under the control of these faults in Quaternary.展开更多
The Late Quaternary slip rate along the Maqu segment of the eastern Kunlun Fault was estimated using a combination of high-resolution remote sensing imagery interpretation, field observations and differential Global P...The Late Quaternary slip rate along the Maqu segment of the eastern Kunlun Fault was estimated using a combination of high-resolution remote sensing imagery interpretation, field observations and differential Global Positioning System(GPS) measurements of offset river terraces, and 14 C dating of snail shells collected from offset risers. The results show that the left-slip rate along the segment is 3–5 mm/a, and that the vertical slip rate is 0.3–0.5 mm/a. Both the horizontal and vertical slips on the segment remain consistent over a distance of ~100 km. It means that no slip gradient as previously suggested occurred along the Maqu segment, and which thus might behave as an independent seismogenic fault. Judging from multiple relationships among young terrace offsets, we infer that co-seismic surface rupture produced by a characteristic earthquake with a magnitude of Ms7.0–7.5 on the Maqu fault could generate a horizontal slip of 4.5–5 m and a vertical slip of 0.45–0.5 m, with a corresponding ratio(Dh/Dv) of about 9. Two surface rupture events must have occurred over the past 3300 years, the latest one possibly between 1485 cal BP and 1730 cal BP.展开更多
The characteristics of the Bolokenu-Aqikekuduk(Bo-A) fault,a right-lateral strike-slip fault that runs for more than 700 km long and obliquely cuts North Tianshan Mountains,are evaluated here based on remote sensing...The characteristics of the Bolokenu-Aqikekuduk(Bo-A) fault,a right-lateral strike-slip fault that runs for more than 700 km long and obliquely cuts North Tianshan Mountains,are evaluated here based on remote sensing data,and through an analysis of the results from field investigations as well as climate-geomorphic events. The fault is composed of a western segment with a NW strike and an eastern segment with a NWW strike.The western segment is nearly 250 km long,extending northwestward into Kazakhstan with a right-lateral strike-slip rate of 5 mm/a.This domain consists of 4-5 rupture sections,with 3-4 deformation belts,caused by ancient or historical earthquakes,and suggesting the potential for the occurrence of further strong earthquakes(with M≈7.5) in future. The eastern segment of the fault shows a right-lateral strike-slip rate of 1-1.4 mm/a,with the development of 3-4 deformation belts caused by ancient or historical earthquakes,and with a potential for future strong earthquake with M≈7.0. A typical strain partitioning style in the compression area has developed between the intermontane BoA fault and the piedmont thrust structures of Northern Tianshan Mountains,under the effect of oblique compression,as indicated by the piedmont thrust structure and the strike-slip fault in the mountains.展开更多
From the results of researches of active faults in resent years, a correlation analysis between segments of the faults according to surface ruptures in nine historical strong earthquakes occurring in downfaulted syste...From the results of researches of active faults in resent years, a correlation analysis between segments of the faults according to surface ruptures in nine historical strong earthquakes occurring in downfaulted system and active structures around Ordos block is conducted in paper. The result shows that there is a good correlation between them, except few individual data that have more uncertain parameters. It shows that intensity and segments of surface ruptures in these strong earthquakes are intrinsically related with the active structures. These strong earthquakes produced stable and unstable rupture boundaries of characteristic-earthquake type and successive occurrence of strong earthquakes on the different boundary faults in the same tectonic unit.展开更多
The Karatau fault is one of the important strike-slip faults in central Asia,and the South Turgay Basin is located towards its northern end.Detailed seismic interpretation indicated that the strikeslip tectonism of th...The Karatau fault is one of the important strike-slip faults in central Asia,and the South Turgay Basin is located towards its northern end.Detailed seismic interpretation indicated that the strikeslip tectonism of the Karatau fault weakened gradually from west to east in the South Turgay Basin.Typical flower structures developed on the section,and strike-slip faults showed an echelon pattern on planar view.The Karatau strike-slip fault affected the South Turgay Basin in two periods:(1) The South Turgay strike-slip pull-apart rift basin formed as a result of regional extensive stress in the Early-Middle Jurassic,characterized by the juxtaposition of horsts and grabens.The formation of horsts provided favorable reservoir spaces for later hydrocarbon accumulation,and different filling stages of grabens controlled different reservoir-forming factors in grabens.(2) Two stages of tectonic inversion occurred in the Late Jurassic and Late Cretaceous and played a crucial role in the final shape of the structure in the South Turgay Basin.The oil and gas migrated to form reservoirs and mainly concentrated in the horsts,graben slopes and in both sides of the strike-slip fault zone.In the case of the degree of accumulation of petroleum,the factor explaining why horsts are better than grabens is the strike-slip pull-apart of the South Turgay Basin,and the structure inversion of the South Turgay Basin explains why the west graben is better than the east one.Overall,the Karatau strike-slip fault played a very important role in the formation of the South Turgay Basin and its hydrocarbon accumulations.展开更多
The slip rate of Yema River-Daxue Mountain fault in the western segment of Qilian Mountains was determined by the dated offset of river risers or gullies. Results indicate that the left-lateral fault slip rate is 2.82...The slip rate of Yema River-Daxue Mountain fault in the western segment of Qilian Mountains was determined by the dated offset of river risers or gullies. Results indicate that the left-lateral fault slip rate is 2.82± 0.20 mm/a at Dazangdele site, 2.00 ± 0.24 mm/a at Shibandun site, and 0.50± 0.36 and 2.80±0.33 mm/a at two sites in Zhazihu. The ideal average slip rate of the whole fault is 2.81 ± 0.32 mm/a. The lower slip rate confirms part of the displacement of Altyn Tagh fault was transformed into an uplifting of the strap mountains in the western segment of Qilian Mountains, whereas another part transformed into sinistral displacement of Haiyuan fault. This study illustrates that the slip of large strike-slip faults in the northeastern margin of the plateau transforms into crust thickening at the tip of the fault without large-scale propagation to the outer parts of the plateau.展开更多
We analyze co-seismic displacement field of the 26 December 2004, giant Sumatra–Andaman earthquake derived from Global Position System observations,geological vertical measurement of coral head, and pivot line observ...We analyze co-seismic displacement field of the 26 December 2004, giant Sumatra–Andaman earthquake derived from Global Position System observations,geological vertical measurement of coral head, and pivot line observed through remote sensing. Using the co-seismic displacement field and AK135 spherical layered Earth model, we invert co-seismic slip distribution along the seismic fault. We also search the best fault geometry model to fit the observed data. Assuming that the dip angle linearly increases in downward direction, the postfit residual variation of the inversed geometry model with dip angles linearly changing along fault strike are plotted. The geometry model with local minimum misfits is the one with dip angle linearly increasing along strike from 4.3oin top southernmost patch to 4.5oin top northernmost path and dip angle linearly increased. By using the fault shape and geodetic co-seismic data, we estimate the slip distribution on the curved fault. Our result shows that the earthquake ruptured *200-km width down to a depth of about 60 km.0.5–12.5 m of thrust slip is resolved with the largest slip centered around the central section of the rupture zone78N–108N in latitude. The estimated seismic moment is8.2 9 1022 N m, which is larger than estimation from the centroid moment magnitude(4.0 9 1022 N m), and smaller than estimation from normal-mode oscillation data modeling(1.0 9 1023 N m).展开更多
基金Project(51674287)supported by the National Natural Science Foundation of China。
文摘Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthquake. In this paper, a three-dimensional normal fault sliding device was designed, and a shaking table test was carried out to study tunnel seismic performance under normal fault slip. The results show that peak acceleration of lining is dominated by an existence of fault and direction of seismic excitation, not normal fault slip. And the incremental strains of lining in critical zone with 1.7 times fault thickness and centered in faults induced by normal fault slip and seismic excitation are larger than ones only by seismic excitation. And the incremental strains in critical zone increase with the increase of normal fault slip magnitude ranging from 0 to 2 mm. And normal fault slip results in a significant reduction of overall tunnel stiffness subjected to an earthquake. These experimental results provide a scientific reference for prevention and control measurement of tunnel damage under earthquake and normal fault slip.
基金supported by Chinese Joint Seismological Science Foundation(A07005)basic research foundation from Institute of Earthquake Science,and State Key Basic Research De-velopment and Programming Project of China(2004CB418403)
文摘The Hori's inverse method based on spectral decomposition was applied to estimate coseismic slip distribution on the rupture plane of the 14 November 2001 Ms8.1 Kunlun earthquake based on GPS survey results. The inversion result shows that the six sliding models can be constrained by the coseismic GPS data. The established slips mainly concentrated along the eastern segment of the fault rupture, and the maximum magnitude is about 7 m. Slip on the eastern segment of the fault rupture represents as purely left-lateral strike-slip. Slip on the western segment of the seismic rupture represents as mainly dip-stip with the maximum dip-slip about 1 m. Total predicted scalar seismic moment is 5.196× 10^2° N.m. Our results constrained by geodetic data are consistent with seismological results.
基金This work was supported by the National Key Research and Development Program of China(2018YFC1503603,2016YFB0501405)the National Natural Science Foundation of China(41874011,41774011)。
文摘On August 8,2017,an M_(W)6.5 earthquake occurred in Jiuzhaigou County,Sichuan Province,China,on the eastern margin of the Qinghai-Tibet Plateau.This study investigates the coseismic deformation field and fault model with ascending and descending Sentinel-1 synthetic aperture radar(SAR)images,aftershock distribution,and elastic half-space dislocation model.The regional fault slip pattern is then quantita-tively examined using the boundary element method.The results show that the ascending and descending interferometric synthetic aperture radar(InSAR)coseismic deformation fields display an overall NNW-SSE trend,with more significant deformation on the southwest side of the fault.The coseismic fault geometry is divided into NW and SE sub-faults with strikes of 162.1°and 149.3°,respectively.The coseismic fault slip is dominated by a left-lateral strike-slip movement with an average rake of-2.31°,mainly occurring at a depth of 0-13.04 km with a shape of an approximately inverted triangle.The fault slip features two peak slip zones,with a maximum of 1.39 m.The total seismic moment is 6.34×10^(18) N·m(M_(W)6.47).The boundary element calculation quantitatively indicates that the regional fault slip pattern may be mainly attributable to the changing strike and dip.The strike changes from NNWeSSE to nearly NS direction,and the dip gradually decreases from the Jiuzhaigou earthquake fault in the north to the Huya fault in the south.With these characteristics,the Huya and the Jiuzhaigou earthquake faults form the eastern boundary of the Minshan uplift zone and accommodate the accumulated deformation.
基金Funded as a sub-project entitled"Tectonic Patterns of Strong Earthquakes in the Central Asia Continent and Its Dynamic Setting(2008CB425703)"within the project"A Study on the Occurrence Mechanism of the Wenchuan Earthquake and Its Large-scale Regional Dynamic Setting" under the National Key Basic R & D Program (973 Program),China
文摘Based on the collection of active fault slip rate data of large intra-continental shallow thrust earthquakes occurring in the triangular seismic region of the East Asia continent,a preliminary analysis has been performed with results showing that the Wenchuan,Sichuan, China earthquake ( MS = 8.0) of May 12,2008 occurred on the Longmenshan Mountain active fault with an abnormally low slip rate.
文摘A graphical method for determining the principal stress distribution of a triaxial stress state from a fault slipstate was proposed by Aleksandrowski in 1985,based on Arthaud′s concept of plane movement,Alek-sandrowski′s method,however,is only valid for the cases in which the values of the stress ratios(C)are consid-ered 1o be ,10,2,1.1 and 1.Whether the method is applicable for general cases of all values of C has not yetbeen confirmed.In this paper.Aleksandrowskis′ method is tested using a numerical derivation from spatialgeometric analysis,and it is revealed that this method is correct for all values of stress ratios other than C=,10,2,1.1,and 1,i.c-【C【.
基金supported by the National Natural Science Foundation of China (Grant No.41171001)the 1:50000 Active Fault Mapping of Langshan Piedmont Fault (Grant No.201408023)the Basic Research Business Foundation of the China Earthquake Administration (Grant No.ZDJ2012-02)
文摘Offset geomorphic features and deformed late Quaternary strata indicate active deformation along the Langshan-Seertengshan piedmont fault (LSPF), one of the most active faults in the Hetao fault zone in Inner Mongolia, North China. The widespread occurrence of bedrock fault scarps along the LSPF offers excellent opportunity to examine the faulting history. Using cosmogenic ^10Be exposure dating, we measured the exposure ages of the western Langshankou scarp, located in the middle segment of the LSPF. Our data revealed at least two earthquakes that occurred at 22.2±3.3 Ira and 7.2±2.4 ka, respectively. These events are consistent with previous paleoseismic trench studies. The regression of the relationship between the age and sampling height along the scarp yield a fault slip rate of 0.10 ±0.05/-0.06 mm/yr, which is significantly lower than the average post-late Pleistocene fault slip rate of ~1 mm/yr, as estimated from the offset of the T2 terraces by previous studies. This indicates that the slip of the LSPF may have been accommodated by other fault branches.
文摘In this article,a method to determine the complete stress tensor by use of fault slip data in combination with experimental parameters of rock mechanics is elucidated;the direction and magnitude of recent tectonic stress in the Xianshuihe fault zone are determined by this method from a great deal of active fault striae data observed in the fault zone and the envelope of rock fracture determined experimentally for rock samples collected from the fault zone;and the applicability of the method and reliability of calculation results are discussed.
基金supported by National Research Foundation,Singapore under its Intra-CREATE Thematic Grant(Award No.NRF2019-THE001-0002).
文摘An unusual increase in seismicity rate near the development and production sites of unconventional energy(e.g.,natural gas and geothermal fluids)has been attributed to subsurface fluid injection.Damaging and hazardous earthquakes in many countries(e.g.,China,South Korea,and the United States)have motivated tremendous effort to understand the complexity of fault slip behaviors in response to fluid pressurization.This study reviews key characteristics of injection-induced fault slip and highlights prediction and mitigation strategies relevant to unconventional energy projects.This capability relies on adequate understanding and characterization of first-and second-order friction and stability behaviors of faults as well as impacts of fluid pressurization and its role in triggering aseismic,seismic,and transitional slip behaviors.Suitable methods of investigation and characterization are noted together with typical examples together with scientific advances in our understanding towards forewarning and mitigation.Present challenges are addressed relating to the understanding of complex secondorder friction behaviors and the location and characterization of blind faults.These needs are aided in the integration of multi-scale and multi-physical data obtained from laboratory,numerical,and field studies to offer crucial information for induced hazard preparedness and rapid run-up assessment.Finally,emerging technologies contributing to an improved understanding,such as data analytics and machine learning,are discussed in heralding the next frontier for injection-induced seismicity research.
基金supported by National Key R&D Program of China(2016YFE0109300)National Natural Science Foundation of China(41874061 and41802231)。
文摘With the more complete acoustic emission(AE)catalog improved by the multi-channel AE matched-filter technique(MFT),we study the spatiotemporal evolution of the AE activities after laboratory stick-slip events incorporate with the slip data recorded by displacement transducers on an^1.5 m granite fault.The results show that the number of the AE events identified by MFT is about 9 times larger than that of the traditional method.A logarithmic expansion of early AE events along the fault strike is observed as a function of time,whereas the fault does not slip in the same manner.Thus,we related the expansion of the early AE events along the fault to the stress transfer caused by the adjacent AE events.Moreover,there is a good correlation between the cumulative number of the later AE events and the amount of fault slip.It suggests that the stress change caused by the continuous slip of the simulated fault after the stick-slip events response for the later AE events near or on the simulated fault.
基金supported by the Special Project of Basic Work of Science and Technology(grant No.2011FY110100-2)the Project of China Geological Survey(grant No.1212010914025 and No.12120113038000)the Project of 12~(th) Five-Year National Sci-Tech Support Plan(grant No.2011BAK12B09)
文摘The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight Ms ≥ 7.0 earthquakes. The seismic risk of the Xianshuihe fault zone is a large and realistic threat to the western Sichuan economic corridor. Based on previous studies, we carried out field geological survey and remote sensing interpretation in the fault zone. In addition, geophysical surveys, trenching and age-dating were conducted in the key parts to better understand the geometry, spatial distribution and activity of the fault zone. We infer to divide the fault zone into two parts: the northwest part and the southeast part, with total eight segments. Their Late Quaternary slip rates vary in a range of 11.5 mm/a –(3±1) mm/a. The seismic activities of the Xianshuihe fault zone are frequent and strong, periodical, and reoccurred. Combining the spatial and temporal distribution of the historical earthquakes, the seismic hazard of the Xianshuihe fault zone has been predicted by using the relationship between magnitude and frequency of earthquakes caused by different fault segments. The prediction results show that the segment between Daofu and Qianning has a possibility of Ms ≥ 7.0 earthquakes, while the segment between Shimian and Luding is likely to have earthquakes of about Ms 7.0. It is suggested to establish a GPS or In SAR-based real-time monitoring network of surface displacement to cover the Xianshuihe fault zone, and an early warning system of earthquakes and post seismic geohazards to cover the major residential areas.
基金partly supportedby National Natural Science Foundation of China(Grant No.41472103)
文摘Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of a large conjugate strike-slip fault system from the intracratonic Tarim Basin, NW China. Within our study area, "X" type NE and NW trending faults occur within Cambrian- Ordovician carbonates. The dihedral angles of these conjugate faults have narrow ranges, 19~ to 62~ in the Cambrian and 26~ to 51~ in the Ordovician, and their modes are 42~ and 44~ respectively. These data are significantly different from the ~60~ predicted by the Coulomb fracture criterion. It is concluded that: (1) The dihedral angles of the conjugate faults were not controlled by confining pressure, which was low and associated with shallow burial; (2) As dihedral angles were not controlled by pressure they can be used to determine the shortening direction during faulting; (3) Sequential slip may have played an important role in forming conjugate fault intersections; (4) The conjugate fault system of the Tarim basin initiated as rhombic joints; these subsequently developed into sequentially active "X" type conjugate faults; followed by preferential development of the NW-trending faults; then reactivation of the NE trending faults. This intact rhombic conjugate fault system presents new insights into mechanisms of dihedral angle development, with particular relevance to intracratonic basins.
文摘针对2021年5月22日青海玛多县Ms7.4地震震区形变信息、形变特征以及滑动断裂特性的提取与模拟等问题,获取了玛多县地震区的Sentinel-1A影像,采用双轨差分干涉法,并优化各项参数,提取出同震形变场,利用slipBERI(slip from bayesian regularized inversion)方法对断层的几何参数及形变场进行反演和模拟。结果表明:玛多地震同震形变场的形状近似于一个椭圆,断层整体呈西北-东南走向,其上部为沉降区,下部为隆升区,最大视线向(line of sight,LOS)形变分别为0.65 m和0.81 m。地震形变场的运动主要以东西方向的水平运动为主,并伴有明显的左旋走滑,断层上下方相对视线向运动可达1.50 m,表明此次地震的地表破裂有明显的错位移动。通过分析形变信息和地表破裂特征,可以判断该破裂带位于巴颜喀拉块体,为昆仑山口-江口断裂,反演结果与观测结果相符,这表明观测结果较可靠。
基金financially supported by a grant by the Natural Science and Engineering Research Council of Canada (NSERC) in partnership with Vale Ltd.-Sudbury Operations,Canada,under the Collaborative Research and Development Program
文摘In the present study, methodologies to evaluate damage around an underground opening due to seismic waves arising from mining-induced fault-slip are examined. First, expressions for an associated flow rule with a failure criterion are developed for biaxial stress conditions, which are implemented into FLAC3D code. A three-dimensional(3D) mine model encompassing a fault running parallel to a steeply dipping orebody is constructed, whereby static and dynamic analyses are performed to extract stopes and simulate fault-slip in dynamic condition, respectively. In the analysis, the developed biaxial model is applied to the stope wall. The fault-slip simulation is performed, considering shearing of fault surface asperities and resultant stress drop driving the fault-slip. Two methodologies to evaluate damage caused by seismic waves arising from the simulated fault-slip are examined:(i) the ratio of dynamic plastic strain increment to elastic strain limit and(ii) plastic strain energy density. For the former one, two types of strain increments are tested, namely effective shear strain increment and volumetric strain increment.The results indicate that volumetric strain increment is a suitable index for detecting damage near the stope wall, while effective shear strain increment is appropriate for evaluating damage in backfill. The evaluation method with plastic strain energy density is found to be capable of assessing damage accumulated in an extensive area caused by rock mass oscillation due to seismic wave propagation. Possible damage to mine developments in the proximity of a stope is clearly described with the index. The comparison of the two methods clarifies that the former one assesses "instantaneous" damage, which is found to be different from "accumulated" damage calculated using plastic strain energy density, in terms of damage area and its location. It is thus concluded that the combination of the two methodologies leads to more accurate damage assessment as a proper measure against rockburst.
文摘The structural analysis based on the explanation of seismic profiles indicates that a lot of thrust faults and strike-slip faults of Late Cenozoic occur in western Hexi Corridor and its nearby regions. They can be divided into two types. One is thrust faults dipping southwards and extending NWwards, which was mainly correlated with the thrusting of northern Qilianshan and located at the NE margin of Qilianshan and the southwestern Hexi Corridor, the other is thrust faults and strike-slip faults that were related to the strike-slipping of Altun fault and located mainly at the regions of Hongliuxia, Kuantaishan, and Helishan that are close to the Altun fault. All these faults, which were related to the remote effects of collision between the two continents of India and Tibet during the Late Eocene and later, started to develop since the Late Tertiary and presented the features of violent thrust or strike-slip movement in Quaternary. Many of them are still active up to now and thus belong to the active faults that are the potential inducement of earthquakes in the Hexi Corridor. Moreover, a lot of intense structural deformation and many morphology phenomena such as tectonic terrace and river offset were formed under the control of these faults in Quaternary.
基金support of the Natural Science Foundation of China(41472178)the China Geological Survey projects(1212011120167,12120114002211)
文摘The Late Quaternary slip rate along the Maqu segment of the eastern Kunlun Fault was estimated using a combination of high-resolution remote sensing imagery interpretation, field observations and differential Global Positioning System(GPS) measurements of offset river terraces, and 14 C dating of snail shells collected from offset risers. The results show that the left-slip rate along the segment is 3–5 mm/a, and that the vertical slip rate is 0.3–0.5 mm/a. Both the horizontal and vertical slips on the segment remain consistent over a distance of ~100 km. It means that no slip gradient as previously suggested occurred along the Maqu segment, and which thus might behave as an independent seismogenic fault. Judging from multiple relationships among young terrace offsets, we infer that co-seismic surface rupture produced by a characteristic earthquake with a magnitude of Ms7.0–7.5 on the Maqu fault could generate a horizontal slip of 4.5–5 m and a vertical slip of 0.45–0.5 m, with a corresponding ratio(Dh/Dv) of about 9. Two surface rupture events must have occurred over the past 3300 years, the latest one possibly between 1485 cal BP and 1730 cal BP.
基金the National 973 Plan"The mechanism of Wenchuan earthquake and regional geodynamics of large area"(Project No.2008CB425703)
文摘The characteristics of the Bolokenu-Aqikekuduk(Bo-A) fault,a right-lateral strike-slip fault that runs for more than 700 km long and obliquely cuts North Tianshan Mountains,are evaluated here based on remote sensing data,and through an analysis of the results from field investigations as well as climate-geomorphic events. The fault is composed of a western segment with a NW strike and an eastern segment with a NWW strike.The western segment is nearly 250 km long,extending northwestward into Kazakhstan with a right-lateral strike-slip rate of 5 mm/a.This domain consists of 4-5 rupture sections,with 3-4 deformation belts,caused by ancient or historical earthquakes,and suggesting the potential for the occurrence of further strong earthquakes(with M≈7.5) in future. The eastern segment of the fault shows a right-lateral strike-slip rate of 1-1.4 mm/a,with the development of 3-4 deformation belts caused by ancient or historical earthquakes,and with a potential for future strong earthquake with M≈7.0. A typical strain partitioning style in the compression area has developed between the intermontane BoA fault and the piedmont thrust structures of Northern Tianshan Mountains,under the effect of oblique compression,as indicated by the piedmont thrust structure and the strike-slip fault in the mountains.
基金Chinese Joint Seismological Science Foundation.Contribution! No. 2000A005Institute of Crustal Dynamics, China Seismological
文摘From the results of researches of active faults in resent years, a correlation analysis between segments of the faults according to surface ruptures in nine historical strong earthquakes occurring in downfaulted system and active structures around Ordos block is conducted in paper. The result shows that there is a good correlation between them, except few individual data that have more uncertain parameters. It shows that intensity and segments of surface ruptures in these strong earthquakes are intrinsically related with the active structures. These strong earthquakes produced stable and unstable rupture boundaries of characteristic-earthquake type and successive occurrence of strong earthquakes on the different boundary faults in the same tectonic unit.
基金supported by the Major National Science and Technology Projects of China (No. 2008ZX05029-002)CNPC Research Topics of China (No.07B60101)
文摘The Karatau fault is one of the important strike-slip faults in central Asia,and the South Turgay Basin is located towards its northern end.Detailed seismic interpretation indicated that the strikeslip tectonism of the Karatau fault weakened gradually from west to east in the South Turgay Basin.Typical flower structures developed on the section,and strike-slip faults showed an echelon pattern on planar view.The Karatau strike-slip fault affected the South Turgay Basin in two periods:(1) The South Turgay strike-slip pull-apart rift basin formed as a result of regional extensive stress in the Early-Middle Jurassic,characterized by the juxtaposition of horsts and grabens.The formation of horsts provided favorable reservoir spaces for later hydrocarbon accumulation,and different filling stages of grabens controlled different reservoir-forming factors in grabens.(2) Two stages of tectonic inversion occurred in the Late Jurassic and Late Cretaceous and played a crucial role in the final shape of the structure in the South Turgay Basin.The oil and gas migrated to form reservoirs and mainly concentrated in the horsts,graben slopes and in both sides of the strike-slip fault zone.In the case of the degree of accumulation of petroleum,the factor explaining why horsts are better than grabens is the strike-slip pull-apart of the South Turgay Basin,and the structure inversion of the South Turgay Basin explains why the west graben is better than the east one.Overall,the Karatau strike-slip fault played a very important role in the formation of the South Turgay Basin and its hydrocarbon accumulations.
基金the Special Fund for China Earthquake Research (Grant No.201408023)National Natural Science Foundation of China (Grant No.40872132,41030317)Chinese Academy of Sciences Key Project (XDB03020201)
文摘The slip rate of Yema River-Daxue Mountain fault in the western segment of Qilian Mountains was determined by the dated offset of river risers or gullies. Results indicate that the left-lateral fault slip rate is 2.82± 0.20 mm/a at Dazangdele site, 2.00 ± 0.24 mm/a at Shibandun site, and 0.50± 0.36 and 2.80±0.33 mm/a at two sites in Zhazihu. The ideal average slip rate of the whole fault is 2.81 ± 0.32 mm/a. The lower slip rate confirms part of the displacement of Altyn Tagh fault was transformed into an uplifting of the strap mountains in the western segment of Qilian Mountains, whereas another part transformed into sinistral displacement of Haiyuan fault. This study illustrates that the slip of large strike-slip faults in the northeastern margin of the plateau transforms into crust thickening at the tip of the fault without large-scale propagation to the outer parts of the plateau.
基金supported by the Special Fund of Fundamental Scientific Research Business Expense for Higher School of Central Government(Projects for creation teams ZY20110101)NSFC 41090294talent selection and training plan project of Hebei university
文摘We analyze co-seismic displacement field of the 26 December 2004, giant Sumatra–Andaman earthquake derived from Global Position System observations,geological vertical measurement of coral head, and pivot line observed through remote sensing. Using the co-seismic displacement field and AK135 spherical layered Earth model, we invert co-seismic slip distribution along the seismic fault. We also search the best fault geometry model to fit the observed data. Assuming that the dip angle linearly increases in downward direction, the postfit residual variation of the inversed geometry model with dip angles linearly changing along fault strike are plotted. The geometry model with local minimum misfits is the one with dip angle linearly increasing along strike from 4.3oin top southernmost patch to 4.5oin top northernmost path and dip angle linearly increased. By using the fault shape and geodetic co-seismic data, we estimate the slip distribution on the curved fault. Our result shows that the earthquake ruptured *200-km width down to a depth of about 60 km.0.5–12.5 m of thrust slip is resolved with the largest slip centered around the central section of the rupture zone78N–108N in latitude. The estimated seismic moment is8.2 9 1022 N m, which is larger than estimation from the centroid moment magnitude(4.0 9 1022 N m), and smaller than estimation from normal-mode oscillation data modeling(1.0 9 1023 N m).