Based on the outcrop survey,3D seismic data interpretation,drilling data analysis,the structural patterns and distribution of fault damage zones in carbonate strata of Tazhong Paleo-uplift were established to reveal t...Based on the outcrop survey,3D seismic data interpretation,drilling data analysis,the structural patterns and distribution of fault damage zones in carbonate strata of Tazhong Paleo-uplift were established to reveal the oil and gas enrichment law in the fault damage zones.The following findings were reached:(1)Through the filed survey,the fault damage zone system consists of fault core,damage zone with branch fault and fracture network.Affected by the active nature of the major faults,the fault damage zones differ in planar pattern and scale along the major faults.(2)3D seismic profiles reveal that there are three types of fault damage zones in carbonate strata in Tazhong paleo-uplift,strike-slip fault damage zones,thrust fault damage zones and superimposed fault damage zones.Featuring3 flowers and 3 root belts in vertical,the strike-slip fault damage zone can be subdivided into linear type,oblique type,feather type and horsetail type in plane.Thrust fault damage zones can be further divided into fault anticline type,anticline type and slope type.As the superimposition result of the above two kinds of fault damage zones,superimposed fault damage zones appear in three patterns,intersect type,encompassment type and penetrating type.(3)Cores from wells and geochemical data show oil and gas may migrate along the major fault and laterally.The feather type in strike-slip fault system,fault anticline type in thrust fault damage zone and intersect type in superimposed fault damage zone are possible sites for high production and efficiency wells.展开更多
he convergence between India and Eurasia is partly accommodated by motion of a few large blocks along strike\|slip faults. About 1800km long Altyn Tagh fault strikes in N60~80°E and allows the northeastward disp...he convergence between India and Eurasia is partly accommodated by motion of a few large blocks along strike\|slip faults. About 1800km long Altyn Tagh fault strikes in N60~80°E and allows the northeastward displacement of the Tibet plateau relative to the Tarim. The Altyn Tagh fault zone is a typical transpressional fault zone, characterized by blocks rotation and crustal shortening and vertical extrusion of blocks within the Altyn Tagh strike\|slip system. Differences of three\|dimensional deformation and configuration of the active structures are recognized at different segment of the Altyn Tagh fault zone.1\ Structural configuration of the Altyn Tagh fault zone\;In the Altyn Tagh strike\|slip fault zone, the assemblage pattern of the (active) faults is in the form of parallel plumes, especially in the eastern and the western segments of the Altyn Tagh fault zone. These plumes structures in the eastern segment are assembled by string\|like left lateral strike\|slip fault and broom\|like thrusting faults, and in the western segment by arc\|like left lateral strike\|slip faults along with thrusting faults and normal faults. In the middle segment of the Altyn Tagh fault zone, the structures are characterized by the string\|like left lateral strike\|slip faults in the center and reverse thrusting faults on the two sides.展开更多
The paper focuses on the characteristics of faulting and magmatism of the Okinawa Trough and the relation between them. En-echelon grabens are ranked oblique to the continental shelf edge uplift, and the Longwang upli...The paper focuses on the characteristics of faulting and magmatism of the Okinawa Trough and the relation between them. En-echelon grabens are ranked oblique to the continental shelf edge uplift, and the Longwang uplift, the rifting block ridge in the northern segment and the "Mianhua uplift" in the southern segment have possibly preserved characteristics of volcanism and magmatism occurring with those rifting phases. The clockwise rotation of the southern Ryukyu Islands, driven by collision between Luzon and Taiwan, has played a key role in the crustal oceanization, enhancing the crustal extension of the southern segment and inducing volcanic magmatism in those grabens, among which the Yaeyama graben is a typical example of the presence of oceanic crust. Faulting and magmatism were mainly migrating towards the island arc asymmetrically. The crustal oceanization of the Okinawa Trough is difficultly interpreted by the linear magnetic anomaly model, which is fit for the symmetric spreading of the mid-oceanic ridges.展开更多
Boli basin, between Yishu fracture belt and Dunmi fracture belt, is the biggest Mesozoic coal basin in the east of Heilongjiang Province. Now it is a fault-fold remnant basin. The basin’s shape is generally consisten...Boli basin, between Yishu fracture belt and Dunmi fracture belt, is the biggest Mesozoic coal basin in the east of Heilongjiang Province. Now it is a fault-fold remnant basin. The basin’s shape is generally consistent with the whole distribution of the cover folds, an arc protruding southwards. The basement of the basin can be divided into three fault blocks or structural units. The formation and evoluation of the basin in Mesozoic was determined by the basement fault blocks’ dis- placement features rusulted from by the movement of the edge faults and the main basement faults.展开更多
The Dongsha fault- uplifted massif (for convenience . Dongsha massif from here on) is located in the northern continental shelf-slope of the South China Sea, where the water depth is 100-400m. The massif is considered...The Dongsha fault- uplifted massif (for convenience . Dongsha massif from here on) is located in the northern continental shelf-slope of the South China Sea, where the water depth is 100-400m. The massif is considered to be a part of the large-scale fault-uplifted zone directed NE and separating the Pearl River Mouth Basin into northern and southern graben areas. The sedimentary cover of the Pearl River Mouth Graben consists mainly of a 7000-10000m thick Tertiary system. A large-scale uplift occurred in the Dongsha fault-uplifted zone during Paleocene-Eocene when the lower structural layer (lower Tertiary) existed only in the small depressions of the fault-uplifted zone. The formation and evolution of the Dongsha fault-uplifted zone could be divided into: 1) the basement formation stage (J2-K1); 2) the slowly uplifted stage (K2-E22); 3) the weathering and erosion stage (E23-E31); 4) the integrated subsidence stage (E32-N12) and 5) the last uplifted stage (N13-Q). The formation of the oil and gas pools展开更多
Under strong seismic excitation, a rigid block will uplift from its support and undergo rocking oscillations which may lead to (complete) overturning. Numerical and analytical solutions to this highly nonlinear vibr...Under strong seismic excitation, a rigid block will uplift from its support and undergo rocking oscillations which may lead to (complete) overturning. Numerical and analytical solutions to this highly nonlinear vibration problem are first highlighted in the paper and then utilized to demonstrate how sensitive the overturning behavior is not only to the intensity and frequency content of the base motion, but also to thc presence of strong pulses, to their detailed sequence, and even to their asymnletry. Five idealised pulses capable of representing "rupture-directivity" and "fling" affected ground motions near the fault, are utilized to this end : the one-cycle sinus, the one-cycle cosinus, the Ricker wavelet, the truncated (T)-Ricker wavelet, and the rectangular pulse "Overturning-Acceleration Amplification" and "Rotation" spectra are introduced and presented. Artificial neural network modeling is then developed as an alternative numerical solution. The neural network analysis leads to closed-form expressions for predicting the overturning failure or survival of a rigid block, as a function of its geometric properties and the characteristics of the excitation time history. The capability of the developed neural network modeling is validated through comparisons with the numerical solution. The derived analytical expressions could also serve as a tool for assessing the destructiveness of near-fault ground motions, for structures sensitive to rocking with foundation uplift.展开更多
A set of pull\|apart basins were formed along the Weixi—Qiaohou right\|lateral slip shear zone of the western part of Honghe fault zone during the period from Miocene to Quaternary.A rock suite of alkaline basalt\|tr...A set of pull\|apart basins were formed along the Weixi—Qiaohou right\|lateral slip shear zone of the western part of Honghe fault zone during the period from Miocene to Quaternary.A rock suite of alkaline basalt\|trachyte\|leucite phonolite is distributed in the Pliocene basin developed in the middle and northern parts of the fault. The location of these rocks and the features of the basin indicate the close relationship between the rock suite and the strike\|slipping.. The sedimentological and chronological evidences prove that Dianxi plateau uplifted quickly in the Pliocene. We can get the information about the plutonic process of the uplift of the plateau from this alkaline rock association. There are mainly olivine\|pyroxene\|trachyandesite and biotite\|trachyte in the rock association. The rocks are often of porphyritic texture and block or semi\|directional flowage structure while the matrix is of trachytic or microcrystalline texture. The phanerocrysts are diopsidic augite, rimpylite, biotite and perthite (olivine sometimes can be seen). The matrix are made up of alkaline feldspar microcrystalline (30%~50%), short\|grained diopside (10%~15%), light\|colored volcanic glass (0~15%) and some magnetite, while feldspar microcrystalline in some rocks are arranged directionally. And there are sharp\|edged or round pyroxenite enclaves and hemicrystalline of short grained sinaite, biotite sinaite and felsic breccia in the trachyte, with good demarcation line. The pyroxenite enclaves in the trachyte are of different size, and the size of the biggest ones are 10cm or so with the characteristic of plastic yield flowing. Sinaite hemicrystalline may come from the older intrusions of Pliocene and Eocene epoch.展开更多
The southeastern edge of the Tibetan plateau is marked by several thrust sheets trending roughly in E\|W direction. The Yanyuan thrust sheet is bounded by three arcuate thrust belts, marked by high mountain ranges wit...The southeastern edge of the Tibetan plateau is marked by several thrust sheets trending roughly in E\|W direction. The Yanyuan thrust sheet is bounded by three arcuate thrust belts, marked by high mountain ranges with the Jinhe belt on the north, the Qianhe belt on the south and the Ninglang belt on the west. Within the Yanyuan thrust belt are sedimentary cover rocks of the Yangtze platform, with ages ranging from Sinian to Triassic. In the north, the thrust sheet is overlain by the Muli thrust sheet along the Jinhe belt, while in the south, it is underlain by the Kangdian paleoland along the Qianhe belt. The youngest rocks on the foot wall are late Eocene to Oligocene in age, indicating that the thrusting occurred in the late Tertiary. The top of the Yanyuan thrust belt is truncated by a flat erosion surface similar to that on the plateau to the north. Along a north\|dipping normal fault bordering the Yanyuan basin on the south, the erosion surface is tilted to the south against Triassic rocks. The basin is filled with coal\|bearing clastic sediments of Pliocene and early Pleistocene age, which gives the timing of the normal faulting. Based on the faulting pattern, we propose that the southeastern edge of the Tibetan plateau underwent a large amount of N\|S shortening and uplift along the Yanyuan thrust sheet in the late Tertiary, while the subsequent normal faulting that had occurred along the Yanyuan basin during the Pliocene and Pliocene can be interpreted to have accommodated gravitational collapse of the crust.展开更多
The development, evolution and formation mechanism of faults and their control on the migration and accumulation of Mesozoic oil and gas in the middle-shallow layers of the slope zone of Mahu sag were studied by the i...The development, evolution and formation mechanism of faults and their control on the migration and accumulation of Mesozoic oil and gas in the middle-shallow layers of the slope zone of Mahu sag were studied by the interpretation of seismic and drilling data. Two types of faults, normal and strike-slip, are developed in the middle-shallow layers of the slope zone of the Mahu sag and they are mostly active in the Yanshanian period. They are divided into four grade faults: The grade I strike-slip faults with NWW to near EW direction are related to the left-lateral transpressive fault zones in the northwest of Junggar Basin since the end of the Triassic. The grade II faults with NE to NNE direction are the normal faults located at the junction of the fault zone and the slope zone, and their formation is related to the extension at the top of the nose-like structures in the fault zone. The grade III faults, which are also the normal faults, are the result of the extension at the top of the lower uplifts in the slope zone and differential compaction. The grade IV faults with NE direction are normal faults, which may be related to the extension environment at the tip of the lower uplifts. Faults not only are the channel for the vertical migration of oil and gas, but also control the oil-gas accumulation. There are two types of oil-gas reservoirs in the middle-shallow layers of slope zone of Mahu sag: fault block reservoirs and fault-lithologic reservoirs. They have large traps and promising exploration potential.展开更多
基金Supported by the China National Science and Technology Major Project(2016ZX05004-004)
文摘Based on the outcrop survey,3D seismic data interpretation,drilling data analysis,the structural patterns and distribution of fault damage zones in carbonate strata of Tazhong Paleo-uplift were established to reveal the oil and gas enrichment law in the fault damage zones.The following findings were reached:(1)Through the filed survey,the fault damage zone system consists of fault core,damage zone with branch fault and fracture network.Affected by the active nature of the major faults,the fault damage zones differ in planar pattern and scale along the major faults.(2)3D seismic profiles reveal that there are three types of fault damage zones in carbonate strata in Tazhong paleo-uplift,strike-slip fault damage zones,thrust fault damage zones and superimposed fault damage zones.Featuring3 flowers and 3 root belts in vertical,the strike-slip fault damage zone can be subdivided into linear type,oblique type,feather type and horsetail type in plane.Thrust fault damage zones can be further divided into fault anticline type,anticline type and slope type.As the superimposition result of the above two kinds of fault damage zones,superimposed fault damage zones appear in three patterns,intersect type,encompassment type and penetrating type.(3)Cores from wells and geochemical data show oil and gas may migrate along the major fault and laterally.The feather type in strike-slip fault system,fault anticline type in thrust fault damage zone and intersect type in superimposed fault damage zone are possible sites for high production and efficiency wells.
文摘he convergence between India and Eurasia is partly accommodated by motion of a few large blocks along strike\|slip faults. About 1800km long Altyn Tagh fault strikes in N60~80°E and allows the northeastward displacement of the Tibet plateau relative to the Tarim. The Altyn Tagh fault zone is a typical transpressional fault zone, characterized by blocks rotation and crustal shortening and vertical extrusion of blocks within the Altyn Tagh strike\|slip system. Differences of three\|dimensional deformation and configuration of the active structures are recognized at different segment of the Altyn Tagh fault zone.1\ Structural configuration of the Altyn Tagh fault zone\;In the Altyn Tagh strike\|slip fault zone, the assemblage pattern of the (active) faults is in the form of parallel plumes, especially in the eastern and the western segments of the Altyn Tagh fault zone. These plumes structures in the eastern segment are assembled by string\|like left lateral strike\|slip fault and broom\|like thrusting faults, and in the western segment by arc\|like left lateral strike\|slip faults along with thrusting faults and normal faults. In the middle segment of the Altyn Tagh fault zone, the structures are characterized by the string\|like left lateral strike\|slip faults in the center and reverse thrusting faults on the two sides.
基金The National Major Fundamental Research and Development Project of China under contract Nos G2000046703 and 2007CB411702the Scientific Research Fund of the Second Institute of Oceanography, State Oceanic Administration under contract No.JT0705
文摘The paper focuses on the characteristics of faulting and magmatism of the Okinawa Trough and the relation between them. En-echelon grabens are ranked oblique to the continental shelf edge uplift, and the Longwang uplift, the rifting block ridge in the northern segment and the "Mianhua uplift" in the southern segment have possibly preserved characteristics of volcanism and magmatism occurring with those rifting phases. The clockwise rotation of the southern Ryukyu Islands, driven by collision between Luzon and Taiwan, has played a key role in the crustal oceanization, enhancing the crustal extension of the southern segment and inducing volcanic magmatism in those grabens, among which the Yaeyama graben is a typical example of the presence of oceanic crust. Faulting and magmatism were mainly migrating towards the island arc asymmetrically. The crustal oceanization of the Okinawa Trough is difficultly interpreted by the linear magnetic anomaly model, which is fit for the symmetric spreading of the mid-oceanic ridges.
文摘Boli basin, between Yishu fracture belt and Dunmi fracture belt, is the biggest Mesozoic coal basin in the east of Heilongjiang Province. Now it is a fault-fold remnant basin. The basin’s shape is generally consistent with the whole distribution of the cover folds, an arc protruding southwards. The basement of the basin can be divided into three fault blocks or structural units. The formation and evoluation of the basin in Mesozoic was determined by the basement fault blocks’ dis- placement features rusulted from by the movement of the edge faults and the main basement faults.
文摘The Dongsha fault- uplifted massif (for convenience . Dongsha massif from here on) is located in the northern continental shelf-slope of the South China Sea, where the water depth is 100-400m. The massif is considered to be a part of the large-scale fault-uplifted zone directed NE and separating the Pearl River Mouth Basin into northern and southern graben areas. The sedimentary cover of the Pearl River Mouth Graben consists mainly of a 7000-10000m thick Tertiary system. A large-scale uplift occurred in the Dongsha fault-uplifted zone during Paleocene-Eocene when the lower structural layer (lower Tertiary) existed only in the small depressions of the fault-uplifted zone. The formation and evolution of the Dongsha fault-uplifted zone could be divided into: 1) the basement formation stage (J2-K1); 2) the slowly uplifted stage (K2-E22); 3) the weathering and erosion stage (E23-E31); 4) the integrated subsidence stage (E32-N12) and 5) the last uplifted stage (N13-Q). The formation of the oil and gas pools
文摘Under strong seismic excitation, a rigid block will uplift from its support and undergo rocking oscillations which may lead to (complete) overturning. Numerical and analytical solutions to this highly nonlinear vibration problem are first highlighted in the paper and then utilized to demonstrate how sensitive the overturning behavior is not only to the intensity and frequency content of the base motion, but also to thc presence of strong pulses, to their detailed sequence, and even to their asymnletry. Five idealised pulses capable of representing "rupture-directivity" and "fling" affected ground motions near the fault, are utilized to this end : the one-cycle sinus, the one-cycle cosinus, the Ricker wavelet, the truncated (T)-Ricker wavelet, and the rectangular pulse "Overturning-Acceleration Amplification" and "Rotation" spectra are introduced and presented. Artificial neural network modeling is then developed as an alternative numerical solution. The neural network analysis leads to closed-form expressions for predicting the overturning failure or survival of a rigid block, as a function of its geometric properties and the characteristics of the excitation time history. The capability of the developed neural network modeling is validated through comparisons with the numerical solution. The derived analytical expressions could also serve as a tool for assessing the destructiveness of near-fault ground motions, for structures sensitive to rocking with foundation uplift.
文摘A set of pull\|apart basins were formed along the Weixi—Qiaohou right\|lateral slip shear zone of the western part of Honghe fault zone during the period from Miocene to Quaternary.A rock suite of alkaline basalt\|trachyte\|leucite phonolite is distributed in the Pliocene basin developed in the middle and northern parts of the fault. The location of these rocks and the features of the basin indicate the close relationship between the rock suite and the strike\|slipping.. The sedimentological and chronological evidences prove that Dianxi plateau uplifted quickly in the Pliocene. We can get the information about the plutonic process of the uplift of the plateau from this alkaline rock association. There are mainly olivine\|pyroxene\|trachyandesite and biotite\|trachyte in the rock association. The rocks are often of porphyritic texture and block or semi\|directional flowage structure while the matrix is of trachytic or microcrystalline texture. The phanerocrysts are diopsidic augite, rimpylite, biotite and perthite (olivine sometimes can be seen). The matrix are made up of alkaline feldspar microcrystalline (30%~50%), short\|grained diopside (10%~15%), light\|colored volcanic glass (0~15%) and some magnetite, while feldspar microcrystalline in some rocks are arranged directionally. And there are sharp\|edged or round pyroxenite enclaves and hemicrystalline of short grained sinaite, biotite sinaite and felsic breccia in the trachyte, with good demarcation line. The pyroxenite enclaves in the trachyte are of different size, and the size of the biggest ones are 10cm or so with the characteristic of plastic yield flowing. Sinaite hemicrystalline may come from the older intrusions of Pliocene and Eocene epoch.
文摘The southeastern edge of the Tibetan plateau is marked by several thrust sheets trending roughly in E\|W direction. The Yanyuan thrust sheet is bounded by three arcuate thrust belts, marked by high mountain ranges with the Jinhe belt on the north, the Qianhe belt on the south and the Ninglang belt on the west. Within the Yanyuan thrust belt are sedimentary cover rocks of the Yangtze platform, with ages ranging from Sinian to Triassic. In the north, the thrust sheet is overlain by the Muli thrust sheet along the Jinhe belt, while in the south, it is underlain by the Kangdian paleoland along the Qianhe belt. The youngest rocks on the foot wall are late Eocene to Oligocene in age, indicating that the thrusting occurred in the late Tertiary. The top of the Yanyuan thrust belt is truncated by a flat erosion surface similar to that on the plateau to the north. Along a north\|dipping normal fault bordering the Yanyuan basin on the south, the erosion surface is tilted to the south against Triassic rocks. The basin is filled with coal\|bearing clastic sediments of Pliocene and early Pleistocene age, which gives the timing of the normal faulting. Based on the faulting pattern, we propose that the southeastern edge of the Tibetan plateau underwent a large amount of N\|S shortening and uplift along the Yanyuan thrust sheet in the late Tertiary, while the subsequent normal faulting that had occurred along the Yanyuan basin during the Pliocene and Pliocene can be interpreted to have accommodated gravitational collapse of the crust.
基金Supported by the China National Science and Technology Major Project(2017ZX05008-001,2011ZX05003-003)
文摘The development, evolution and formation mechanism of faults and their control on the migration and accumulation of Mesozoic oil and gas in the middle-shallow layers of the slope zone of Mahu sag were studied by the interpretation of seismic and drilling data. Two types of faults, normal and strike-slip, are developed in the middle-shallow layers of the slope zone of the Mahu sag and they are mostly active in the Yanshanian period. They are divided into four grade faults: The grade I strike-slip faults with NWW to near EW direction are related to the left-lateral transpressive fault zones in the northwest of Junggar Basin since the end of the Triassic. The grade II faults with NE to NNE direction are the normal faults located at the junction of the fault zone and the slope zone, and their formation is related to the extension at the top of the nose-like structures in the fault zone. The grade III faults, which are also the normal faults, are the result of the extension at the top of the lower uplifts in the slope zone and differential compaction. The grade IV faults with NE direction are normal faults, which may be related to the extension environment at the tip of the lower uplifts. Faults not only are the channel for the vertical migration of oil and gas, but also control the oil-gas accumulation. There are two types of oil-gas reservoirs in the middle-shallow layers of slope zone of Mahu sag: fault block reservoirs and fault-lithologic reservoirs. They have large traps and promising exploration potential.