Vibration failure in the pumping system is a significant issue for indus-tries that rely on the pump as a critical device which requires regular maintenance.To save energy and money,a new automated system must be devel...Vibration failure in the pumping system is a significant issue for indus-tries that rely on the pump as a critical device which requires regular maintenance.To save energy and money,a new automated system must be developed that can detect anomalies at an early stage.This paper presents a case study of a machine learning(ML)-based computational technique for automatic fault detection in a cascade pumping system based on variable frequency drive(VFD).Since the intensity of the vibrational effect depends on which axis has the most significant effect,a three-axis accelerometer is used to measure it in the pumping system.The emphasis is on determining the vibration effect on different axes.For experiment,various ML algorithms are investigated on collected vibratory data through Matlab software in x,y,z axes and performances of the algorithms are compared based on accuracy rate,prediction speed and training time.Based on the proposed research results,the multiclass support vector machine(MSVM)is found to be the best suitable algorithm compared to other algorithms.It has been demonstrated that ML algorithms can detect faults automatically rather than conventional meth-ods.MSVM is used for the proposed work because it is less complex and pro-duces better results with a limited data set.展开更多
Condition based maintenance(CBM) is one of the solutions to machinery maintenance requirements. Latest approaches to CBM aim at reducing human engagement in the real-time fault detection and decision making. Machine l...Condition based maintenance(CBM) is one of the solutions to machinery maintenance requirements. Latest approaches to CBM aim at reducing human engagement in the real-time fault detection and decision making. Machine learning techniques like fuzzy-logic-based systems, neural networks, and support vector machines help to reduce human involvement. Most of these techniques provide fault information with 100% confidence. It is undeniably apparent that this area has a vast application scope. To facilitate future exploration, this review is presented describing the centrifugal pump faults, the signals they generate, their CBM based diagnostic schemes, and case studies for blockage and cavitation fault detection in centrifugal pump(CP) by performing the experiment on test rig. The classification accuracy is above 98% for fault detection. This review gives a head-start to new researchers in this field and identifies the un-touched areas pertaining to CP fault diagnosis.展开更多
The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vib...The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vibration value of main sea water pump in the horizontal direction is abnormally high and malfunctions usually happen. Therefore, it is essential to make fault diagnosis of main sea water pump, By conventional off-line monitoring and vibration amplitude spectrum analysis, the fault cycle is found and the alarm value and stop value of equipment are set, which is helpful to equipment maintenance and accident prevention.展开更多
It is important to achieve continuous, stable and efficient pumping well operation in actual oilfield operation. Down-hole pumping well working conditions can be monitored in real-time and a reasonable production sche...It is important to achieve continuous, stable and efficient pumping well operation in actual oilfield operation. Down-hole pumping well working conditions can be monitored in real-time and a reasonable production scheme can be designed when computer diagnosis is used. However, it is difficult to make a comprehensive analysis to supply efficient technical guidance for operation of the pumping well with multiple faults of down-hole conditions, which cannot be effectively dealt with by the common methods. To solve this problem, a method based on designated component analysis (DCA) is used in this paper. Freeman chain code is used to represent the down-hole dynamometer card whose important characteristics are extracted to construct a designated mode set. A control chart is used as a basis for fault detection. The upper and lower control lines on the control chart are determined from standard samples in normal working conditions. In an incompletely orthogonal mode, the designated mode set could be divided into some subsets in which the modes are completely orthogonal. The observed data is projected into each designated mode to realize fault detection according to the upper and lower control lines. The examples show that the proposed method can effectively diagnose multiple faults of down-hole conditions.展开更多
Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accurac...Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accuracy of the training samples. In order to reduce the errors of manual classification, an automatic clustering algorithm is proposed and applied to diagnose down-hole conditions of pumping systems. The spectral clustering (SC) is a new clustering algorithm, which is suitable for any data distribution. However, it is sensitive to initial cluster centers and scale parameters, and needs to predefine the cluster number. In order to overcome these shortcom- ings, we propose an automatic clustering algorithm, fast black hole-spectral clustering (FBH-SC). The FBH algo- rithm is used to replace the K-mean method in SC, and a CritC index function is used as the target function to automatically choose the best scale parameter and clus- tering number in the clustering process. Different simulation experiments were designed to define the relationship among scale parameter, clustering number, CritC index value, and clustering accuracy. Finally, an example is given to validate the effectiveness of the proposed algorithm.展开更多
A highly precise and timely diagnosis technology can help effectively monitor and adjust the sucker rod production system(SRPS)used in oil wells to ensure a safe and efficient production.The current diagnosis method i...A highly precise and timely diagnosis technology can help effectively monitor and adjust the sucker rod production system(SRPS)used in oil wells to ensure a safe and efficient production.The current diagnosis method is pattern recognition of a dynamometer card(DC)based on feature extraction and perceptron.The premise of this method is that the training and target data have the same distribution.However,the training data are collected from a field SRPS with different system parameters designed to adapt to production conditions,which may significantly affect the diagnostic accuracy.To address this issue,in this study,an improved model of the sucker rod string(SRS)is derived by adding faultparameter dimensions,with which DCs under 16 working conditions could be generated.Subsequently an adaptive diagnosis method is proposed by taking simulated DCs generated near the working point of the target SRPS as training data.Meanwhile,to further improve the accuracy of the proposed method,the DC features are improved by relative normalization and using additional features of the DC position to increase the distance between different types of samples.The parameters of the perceptron are optimized to promote its discriminability.Finally,the accuracy and real-time performance of the proposed adaptive diagnosis method are validated using field data.展开更多
Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fa...Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fault analysis and protection.The essay mainly studies and designs large water pump motor′s real time vibration monitoring and fault diagnosis system.The essay completes the systems project design,the establishment of the system and performance test.Eddy-currentsensor,XM-120 vibration module,XM-320 axial translation module,XM-362 temperature module,XM-360 process amount module and XM-500 gateway module are used to measure the axial vibration and displacement of main motors.Laboratory tests prove that the system can meet the requirements of motor vibration monitoring.展开更多
On the basis of theoretical analysis and experimental rerearck, the vibration characteristics of the ZB1-107 bend axis piston pump that is wldely ed in mining machinery is studied in the paper, and the study provides ...On the basis of theoretical analysis and experimental rerearck, the vibration characteristics of the ZB1-107 bend axis piston pump that is wldely ed in mining machinery is studied in the paper, and the study provides the basis for pump fault diagnesis. The vibration signals of the rault-rree pump and tbe faulty pump have been compared in frequency domaln and it is round that tbere is obvious differeuce in their vibration frequency spectra. The experimentol results demonstrate that the raults, such as port plate wear and tear and the looseness or ball joint or the conuecting rod, can be effectively detected through vibration analysis.展开更多
In order to promote the stability of centrifugal pump units and maximize the role of centrifugal pumps, this paper analyzes the composition and basic working principle of centrifugal pumps, presents the main concerns ...In order to promote the stability of centrifugal pump units and maximize the role of centrifugal pumps, this paper analyzes the composition and basic working principle of centrifugal pumps, presents the main concerns of centrifugal pump maintenance, and finally investigates the common faults and maintenance methods of centrifugal pumps for reference.展开更多
Loss of coolant accident(LOCA),loss of fluid accident(LOFA),and loss of vacuum accident(LOVA)are the most severe accidents that can occur in nuclear power reactors(NPRs).These accidents occur when the reactor loses it...Loss of coolant accident(LOCA),loss of fluid accident(LOFA),and loss of vacuum accident(LOVA)are the most severe accidents that can occur in nuclear power reactors(NPRs).These accidents occur when the reactor loses its cooling media,leading to uncontrolled chain reactions akin to a nuclear bomb.This article is focused on exploring methods to prevent such accidents and ensure that the reactor cooling system remains fully controlled.The reactor coolant pump(RCP)has a pivotal role in facilitating heat exchange between the primary cycle,which is connected to the reactor core,and the secondary cycle associated with the steam generator.Furthermore,the RCP is integral to preventing catastrophic events such as LOCA,LOFA,and LOVA accidents.In this study,we discuss the most critical aspects related to the RCP,specifically focusing on RCP control and RCP fault diagnosis.The AI-based adaptive fuzzy method is used to regulate the RCP’s speed and torque,whereas the neural fault diagnosis system(NFDS)is implemented for alarm signaling and fault diagnosis in nuclear reactors.To address the limitations of linguistic and statistical intelligence approaches,an integration of the statistical approach with fuzzy logic has been proposed.This integrated system leverages the strengths of both methods.Adaptive fuzzy control was applied to the VVER 1200 NPR-RCP induction motor,and the NFDS was implemented on the Kori-2 NPR-RCP.展开更多
随着大量新能源的接入,使得多端柔性直流系统(modular multilevel converter based multi-terminal direct current, MMC-MTDC)故障特征愈加复杂,快速准确的故障识别与测距是亟需解决的关键难题之一。为此,提出了一种风-光-储-蓄互补发...随着大量新能源的接入,使得多端柔性直流系统(modular multilevel converter based multi-terminal direct current, MMC-MTDC)故障特征愈加复杂,快速准确的故障识别与测距是亟需解决的关键难题之一。为此,提出了一种风-光-储-蓄互补发电站经柔性直流输电外送系统故障识别与测距方法。首先,搭建风-光-储-蓄互补发电站经柔直外送系统,在此基础上,提出了一种Teager能量算子能量熵的新方法,利用测量点正负极Teager能量算子能量熵的比值构建故障选极及区段识别判据。接着,针对已识别的故障线路,提出变分模态分解(variational mode decomposition, VMD)与Teager能量算子(teager energy operator, TEO)相结合的故障测距方法。最后,利用PSCAD/EMTDC进行仿真,结果表明所提识别方法可以准确判断故障所在线路,所提测距方法能在故障发生2 ms时间窗内实现故障测距,误差率不超过2.55%,并具有较高的耐过渡电阻能力。展开更多
文摘Vibration failure in the pumping system is a significant issue for indus-tries that rely on the pump as a critical device which requires regular maintenance.To save energy and money,a new automated system must be developed that can detect anomalies at an early stage.This paper presents a case study of a machine learning(ML)-based computational technique for automatic fault detection in a cascade pumping system based on variable frequency drive(VFD).Since the intensity of the vibrational effect depends on which axis has the most significant effect,a three-axis accelerometer is used to measure it in the pumping system.The emphasis is on determining the vibration effect on different axes.For experiment,various ML algorithms are investigated on collected vibratory data through Matlab software in x,y,z axes and performances of the algorithms are compared based on accuracy rate,prediction speed and training time.Based on the proposed research results,the multiclass support vector machine(MSVM)is found to be the best suitable algorithm compared to other algorithms.It has been demonstrated that ML algorithms can detect faults automatically rather than conventional meth-ods.MSVM is used for the proposed work because it is less complex and pro-duces better results with a limited data set.
文摘Condition based maintenance(CBM) is one of the solutions to machinery maintenance requirements. Latest approaches to CBM aim at reducing human engagement in the real-time fault detection and decision making. Machine learning techniques like fuzzy-logic-based systems, neural networks, and support vector machines help to reduce human involvement. Most of these techniques provide fault information with 100% confidence. It is undeniably apparent that this area has a vast application scope. To facilitate future exploration, this review is presented describing the centrifugal pump faults, the signals they generate, their CBM based diagnostic schemes, and case studies for blockage and cavitation fault detection in centrifugal pump(CP) by performing the experiment on test rig. The classification accuracy is above 98% for fault detection. This review gives a head-start to new researchers in this field and identifies the un-touched areas pertaining to CP fault diagnosis.
文摘The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vibration value of main sea water pump in the horizontal direction is abnormally high and malfunctions usually happen. Therefore, it is essential to make fault diagnosis of main sea water pump, By conventional off-line monitoring and vibration amplitude spectrum analysis, the fault cycle is found and the alarm value and stop value of equipment are set, which is helpful to equipment maintenance and accident prevention.
基金supported by the Key Program of National Natural Science Foundation of China (61034005)Postgraduate Scientific Research and Innovation Projects of Basic Scientific Research Operating Expensesof Ministry of Education (N100604001)Excellent Doctoral Dissertations Cultivation Project of Northeastern University
文摘It is important to achieve continuous, stable and efficient pumping well operation in actual oilfield operation. Down-hole pumping well working conditions can be monitored in real-time and a reasonable production scheme can be designed when computer diagnosis is used. However, it is difficult to make a comprehensive analysis to supply efficient technical guidance for operation of the pumping well with multiple faults of down-hole conditions, which cannot be effectively dealt with by the common methods. To solve this problem, a method based on designated component analysis (DCA) is used in this paper. Freeman chain code is used to represent the down-hole dynamometer card whose important characteristics are extracted to construct a designated mode set. A control chart is used as a basis for fault detection. The upper and lower control lines on the control chart are determined from standard samples in normal working conditions. In an incompletely orthogonal mode, the designated mode set could be divided into some subsets in which the modes are completely orthogonal. The observed data is projected into each designated mode to realize fault detection according to the upper and lower control lines. The examples show that the proposed method can effectively diagnose multiple faults of down-hole conditions.
基金the National Natural Science Foundation of China (Grant No. 61403040)
文摘Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accuracy of the training samples. In order to reduce the errors of manual classification, an automatic clustering algorithm is proposed and applied to diagnose down-hole conditions of pumping systems. The spectral clustering (SC) is a new clustering algorithm, which is suitable for any data distribution. However, it is sensitive to initial cluster centers and scale parameters, and needs to predefine the cluster number. In order to overcome these shortcom- ings, we propose an automatic clustering algorithm, fast black hole-spectral clustering (FBH-SC). The FBH algo- rithm is used to replace the K-mean method in SC, and a CritC index function is used as the target function to automatically choose the best scale parameter and clus- tering number in the clustering process. Different simulation experiments were designed to define the relationship among scale parameter, clustering number, CritC index value, and clustering accuracy. Finally, an example is given to validate the effectiveness of the proposed algorithm.
基金support by the Major Scientific and Technological Projects of CNPC under Grant no.ZD2019-184-004the National Research Council of Science and Technology Major Project under Grant no.2016ZX05042004+1 种基金the Fundamental Research Funds for the Central University under Grant no.20CX02307Athe Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment under Grant no.20CX02307A
文摘A highly precise and timely diagnosis technology can help effectively monitor and adjust the sucker rod production system(SRPS)used in oil wells to ensure a safe and efficient production.The current diagnosis method is pattern recognition of a dynamometer card(DC)based on feature extraction and perceptron.The premise of this method is that the training and target data have the same distribution.However,the training data are collected from a field SRPS with different system parameters designed to adapt to production conditions,which may significantly affect the diagnostic accuracy.To address this issue,in this study,an improved model of the sucker rod string(SRS)is derived by adding faultparameter dimensions,with which DCs under 16 working conditions could be generated.Subsequently an adaptive diagnosis method is proposed by taking simulated DCs generated near the working point of the target SRPS as training data.Meanwhile,to further improve the accuracy of the proposed method,the DC features are improved by relative normalization and using additional features of the DC position to increase the distance between different types of samples.The parameters of the perceptron are optimized to promote its discriminability.Finally,the accuracy and real-time performance of the proposed adaptive diagnosis method are validated using field data.
文摘Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fault analysis and protection.The essay mainly studies and designs large water pump motor′s real time vibration monitoring and fault diagnosis system.The essay completes the systems project design,the establishment of the system and performance test.Eddy-currentsensor,XM-120 vibration module,XM-320 axial translation module,XM-362 temperature module,XM-360 process amount module and XM-500 gateway module are used to measure the axial vibration and displacement of main motors.Laboratory tests prove that the system can meet the requirements of motor vibration monitoring.
文摘On the basis of theoretical analysis and experimental rerearck, the vibration characteristics of the ZB1-107 bend axis piston pump that is wldely ed in mining machinery is studied in the paper, and the study provides the basis for pump fault diagnesis. The vibration signals of the rault-rree pump and tbe faulty pump have been compared in frequency domaln and it is round that tbere is obvious differeuce in their vibration frequency spectra. The experimentol results demonstrate that the raults, such as port plate wear and tear and the looseness or ball joint or the conuecting rod, can be effectively detected through vibration analysis.
文摘In order to promote the stability of centrifugal pump units and maximize the role of centrifugal pumps, this paper analyzes the composition and basic working principle of centrifugal pumps, presents the main concerns of centrifugal pump maintenance, and finally investigates the common faults and maintenance methods of centrifugal pumps for reference.
基金supported by the Science and Technology Development Fund.
文摘Loss of coolant accident(LOCA),loss of fluid accident(LOFA),and loss of vacuum accident(LOVA)are the most severe accidents that can occur in nuclear power reactors(NPRs).These accidents occur when the reactor loses its cooling media,leading to uncontrolled chain reactions akin to a nuclear bomb.This article is focused on exploring methods to prevent such accidents and ensure that the reactor cooling system remains fully controlled.The reactor coolant pump(RCP)has a pivotal role in facilitating heat exchange between the primary cycle,which is connected to the reactor core,and the secondary cycle associated with the steam generator.Furthermore,the RCP is integral to preventing catastrophic events such as LOCA,LOFA,and LOVA accidents.In this study,we discuss the most critical aspects related to the RCP,specifically focusing on RCP control and RCP fault diagnosis.The AI-based adaptive fuzzy method is used to regulate the RCP’s speed and torque,whereas the neural fault diagnosis system(NFDS)is implemented for alarm signaling and fault diagnosis in nuclear reactors.To address the limitations of linguistic and statistical intelligence approaches,an integration of the statistical approach with fuzzy logic has been proposed.This integrated system leverages the strengths of both methods.Adaptive fuzzy control was applied to the VVER 1200 NPR-RCP induction motor,and the NFDS was implemented on the Kori-2 NPR-RCP.
文摘随着大量新能源的接入,使得多端柔性直流系统(modular multilevel converter based multi-terminal direct current, MMC-MTDC)故障特征愈加复杂,快速准确的故障识别与测距是亟需解决的关键难题之一。为此,提出了一种风-光-储-蓄互补发电站经柔性直流输电外送系统故障识别与测距方法。首先,搭建风-光-储-蓄互补发电站经柔直外送系统,在此基础上,提出了一种Teager能量算子能量熵的新方法,利用测量点正负极Teager能量算子能量熵的比值构建故障选极及区段识别判据。接着,针对已识别的故障线路,提出变分模态分解(variational mode decomposition, VMD)与Teager能量算子(teager energy operator, TEO)相结合的故障测距方法。最后,利用PSCAD/EMTDC进行仿真,结果表明所提识别方法可以准确判断故障所在线路,所提测距方法能在故障发生2 ms时间窗内实现故障测距,误差率不超过2.55%,并具有较高的耐过渡电阻能力。