期刊文献+
共找到5,159篇文章
< 1 2 250 >
每页显示 20 50 100
Formation mechanism of fault accommodation zones under combined stress in graben basin:Implications from geomechanical modeling
1
作者 Qi-Qiang Ren Jin-Liang Gao +3 位作者 Rong-Tao Jiang Jin Wang Meng-Ping Li Jian-Wei Feng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期54-76,共23页
A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,in... A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,indicating the potential exploration target and petroleum accumulation areas.This study aims to analyze the formation mechanism and development of fault accommodation zones under combined stress by a numerical simulation method considering geomechanical modeling.Using three-dimensional(3-D)seismic interpretation and fractal dimension method,exampled with the Dongxin fault zone,the fault activity and fault combination pattern were conducted to quantitatively characterize the activity difference in fault accommodation zones.Combined with mechanical experiment test,a geomehcanical model was established for fault accommodation zones in a graben basin.Integrating the paleostress numerical simulations and structural physical simulation experiment,the developmental characteristics and genetic mechanism of fault accommodation zones were summarized.Influenced by multi movements and combined stresses,three significant tectonic evolution stages of the Dongxing Fault Zone(DXFZ)were distinguished:During the E_(s)^(3)sedimentary period,the large difference in the stress,strain,and rupture distribution in various faults were significant,and this stage was the key generation period for the prototype of the DXFZ,including the FAZ between large-scale faults.During the E_(s)^(2)sedimentary period,the EW-trending symmetric with opposite dipping normal faults and the NE-SW trending faults with large scale were furtherly developed.The junction area of two secondary normal faults were prone to be ruptured,performing significant period for inheriting and developing characteristics of fault accommodation zones.During the Es1 sedimentary period,the high-order faults in the DXFZ exhibited the obvious fault depressions and strike-slip activity,and the fault accommodation zones were furtherly inherited and developed.This stage was the molded and formative period of the FAZ,the low-order faults,and the depression in the DXFZ. 展开更多
关键词 fault accommodation zone Graben basin fault activity Tectonic physical simulation experiment Finite element numerical simulation Dongxin fault zone
下载PDF
Advances in seismological methods for characterizing fault zone structure
2
作者 Yan Cai Jianping Wu +1 位作者 Yaning Liu Shijie Gao 《Earthquake Science》 2024年第2期122-138,共17页
Large earthquakes frequently occur along complex fault systems.Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures.We provid... Large earthquakes frequently occur along complex fault systems.Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures.We provide a comprehensive overview of recent advancements in seismological methods used to study fault zone structures,including seismic tomography,fault zone seismic wave analysis,and seismicity analysis.Observational conditions limit our current ability to fully characterize fault zones,for example,insufficient imaging resolution to discern small-scale anomalies,incomplete capture of crucial fault zone seismic waves,and limited precision in event location accuracy.Dense seismic arrays can overcome these limitations and enable more detailed investigations of fault zone structures.Moreover,we present new insights into the structure of the Anninghe-Xiaojiang fault zone in the southeastern margin of the Qinghai-Xizang Plateau based on data collected from a dense seismic array.We found that utilizing a dense seismic array can identify small-scale features within fault zones,aiding in the interpretation of fault zone geometry and material properties. 展开更多
关键词 fault zone structure TOMOGRAPHY fault zone wave seismic activity Anninghe-Xiaojiang fault zone
下载PDF
Numerical investigation of geostress influence on the grouting reinforcement effectiveness of tunnel surrounding rock mass in fault fracture zones
3
作者 Xiangyu Xu Zhijun Wu +3 位作者 Lei Weng Zhaofei Chu Quansheng Liu Yuan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期81-101,共21页
Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.I... Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed. 展开更多
关键词 Numerical manifold method(NMM) Grouting reinforcement Geostress condition fault fracture zone Tunnel excavation
下载PDF
Detailed sedimentary structure of the Mianning segment of the Anninghe fault zone revealed by H/V spectral ratio 被引量:1
4
作者 Zeqiang Chen Huajian Yao +2 位作者 Xihui Shao Song Luo Hongfeng Yang 《Earthquake Research Advances》 CSCD 2023年第3期19-29,共11页
The Anninghe fault is a major left-lateral strike-slip fault in southwest China and a seismic gap with a potential earthquake larger than MW 7.0 lies in the Mianning-Xichang segment according to recent observations.Th... The Anninghe fault is a major left-lateral strike-slip fault in southwest China and a seismic gap with a potential earthquake larger than MW 7.0 lies in the Mianning-Xichang segment according to recent observations.The shallow structure of this region can offer a glimpse into the geometry of the fault,which plays an important role in earthquake hazard mitigation.To further investigate the sedimentary structure of the Anninghe fault zone,two dense linear arrays with a station spacing of around 80 m were deployed across the fault.In this study,the H/V spectral ratio(HVSR),together with its peak frequency at each station site,was obtained by applying the Nakamura method.Our findings demonstrate that the peak frequency behaves in high correlation with lithology and is controlled by topography.HVSR in foothills or regions with magmatic intrusion shows a single peak at about 2–3 Hz.In locations with abundant Quaternary sedimentation,such as Anninghe valleys and fracture zones,another low-frequency peak around 0.4 Hz can be noticed in HVSR.By using the empirical relationship,the thickness of the sedimentary layer around the fault fracture zone is estimated to be 300–600 m.Furthermore,the sedimentary interface shows a downward dip to the east,possibly influenced by the east-west extrusion stress.Considering the resonance effect,buildings with 6–9 stories in the valley area of the Anninghe require additional attention in earthquake hazard prevention. 展开更多
关键词 HVSR Shallow structure Anninghe fault zone SEDIMENT Earthquake hazard prevention
下载PDF
Tensile Fractures and in situ Stress Measurement Data Constraints on Cretaceous-Present Tectonic Stress Field Evolution of the Tanlu Fault Zone in Shandong Province,North China Craton
5
作者 YANG Chengwei WANG Chenghu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第6期1616-1624,共9页
Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North ... Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North China Craton(NCC),may have preserved records of the NCC’s tectonic history.Borehole television survey and hydraulic fracturing were conducted to analyze the paleo and present tectonic stress fields.Three groups of tensile fractures were identified via borehole television,their azimuths being NNW-SSE,NW-SE and NE-SW,representing multiple stages of tectonic events.Hydraulic fracturing data indicates that the study region is experiencing NEE-SWW-oriented compression and nearly-N-Soriented extension,in accordance with strike-slip and compression.Since the Cretaceous,the orientation of the extensional stress has evolved counterclockwise and sequentially from nearly-NW-SE-oriented to NE-SW-oriented and even nearly N-S-oriented,the stress state having transitioned from strike-slip-extension to strike-slip-compression,in association with the rotating and oblique subduction of the Pacific Plate beneath the NCC,with the participation of the Indian Plate. 展开更多
关键词 borehole television tectonic stress field hydraulic fracturing Tanlu fault zone North China Craton
下载PDF
Assessing current faulting behaviors and seismic risk of the Anninghe-Zemuhe fault zone from seismicity parameters 被引量:94
6
作者 易桂喜 闻学泽 +1 位作者 范军 王思维 《地震学报》 CSCD 北大核心 2004年第3期294-303,共10页
Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for pot... Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually. 展开更多
关键词 地震活动参数 断裂活动 习性 凹凸体潜在地震危险性 安宁河—则木河断裂带
下载PDF
Holocene activities of the Taigu fault zone, Shanxi Province, and their relations with the 1303 Hongdong M=8 earthquake 被引量:21
7
作者 谢新生 江娃利 +1 位作者 王焕贞 冯西英 《地震学报》 CSCD 北大核心 2004年第3期281-293,共13页
The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone ha... The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocated gully terrace of the first order, forming fault-scarp in front of the loess mesa. It has been discovered in many places in ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdong earthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, the Taigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment fault on the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length. Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that, in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins might generate great earthquake with M=8. 展开更多
关键词 太谷断裂 全新世活动 1303年洪洞地震 地表破裂带
下载PDF
Assessing current faulting behaviors and seismic risk of the Anninghe-Zemuhe fault zone from seismicity parameters 被引量:19
8
作者 易桂喜 闻学泽 +1 位作者 范军 王思维 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第3期322-333,共12页
Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for pot... Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually. 展开更多
关键词 seismicity parameter faulting behavior ASPERITY potential seismic risk Anninghe-Zemuhe fault zone
下载PDF
Late-Quaternary Slip Rate and Seismic Activity of the Xianshuihe Fault Zone in Southwest China 被引量:13
9
作者 ZHANG Yongshuang YAO Xin +2 位作者 YU Kai DU Guoliang GUO Changbao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第2期525-536,共12页
The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight... The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight Ms ≥ 7.0 earthquakes. The seismic risk of the Xianshuihe fault zone is a large and realistic threat to the western Sichuan economic corridor. Based on previous studies, we carried out field geological survey and remote sensing interpretation in the fault zone. In addition, geophysical surveys, trenching and age-dating were conducted in the key parts to better understand the geometry, spatial distribution and activity of the fault zone. We infer to divide the fault zone into two parts: the northwest part and the southeast part, with total eight segments. Their Late Quaternary slip rates vary in a range of 11.5 mm/a –(3±1) mm/a. The seismic activities of the Xianshuihe fault zone are frequent and strong, periodical, and reoccurred. Combining the spatial and temporal distribution of the historical earthquakes, the seismic hazard of the Xianshuihe fault zone has been predicted by using the relationship between magnitude and frequency of earthquakes caused by different fault segments. The prediction results show that the segment between Daofu and Qianning has a possibility of Ms ≥ 7.0 earthquakes, while the segment between Shimian and Luding is likely to have earthquakes of about Ms 7.0. It is suggested to establish a GPS or In SAR-based real-time monitoring network of surface displacement to cover the Xianshuihe fault zone, and an early warning system of earthquakes and post seismic geohazards to cover the major residential areas. 展开更多
关键词 Xianshuihe fault zone earthquake left-lateral strike-slip fault slip rate seismic activity prediction
下载PDF
Tectonic Taphrogenesis and Paleoseismic Records from the Yishu Fault Zone in the Initial Stage of the Caledonian Movement 被引量:18
10
作者 TIAN Hongshui ZHANG Zengqi +3 位作者 ZHANG Banghua ZHU Jiewang SANG Zhongxi LI Hongkui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第4期936-947,共12页
The Yishu fault zone (mid-segment of the Tanlu fault zone) was formed in the Presinian. Periodic tectonic activities and strong seismic events have occurred along the fault zone. During the initial stage of the Cale... The Yishu fault zone (mid-segment of the Tanlu fault zone) was formed in the Presinian. Periodic tectonic activities and strong seismic events have occurred along the fault zone. During the initial stage of the Caledonian Movement, with the proceeding of the marine transgression from the Yishu paleo-channel to the western Shandong, uneven thick sediments, composed mainly of sand, mud and carbonates of littoral, lagoon, and neritic facies, were deposited in the Yishu fault zone and western Shandong, and constructed the bottom part of the Lower Cambrian consisting of the Liguan and Zhushadong formations. Through field observations and the lab-examinations, various paleoseismic records have been discovered in the Liguan Formation and the Zhushadong Formations of the Yishu fault zone and its vicinity, including some layers with syn-sedimentary deformation structures that were triggered by strong earthquakes (i.e. seismite, seismo-olistostrome, and seismo-turbidite). Paleoseismic records developed in the Zhushadong Formation are mainly seismites with soft-sediment deformation structures, such as liquefied diapir, small liquefied-carbonate lime-mud volcano, liquefied vein, liquefied breccia, convolute deformation (seismic fold), graded fault, soft siliceous vein, and deformation stromatolite, as well as seismites with brittle deformation structures of semiconsolidated sediments. Paleoseismic records preserved in the Liguan Formation are not only seismo-olistostrome with a slump fold, load structure, and ball-and-pillows, but also seismo-turbidite with convolution bedding, graded bedding and wavy-bedding. However, in the western Shandong area, the closer to the Yishu fault zone, the greater the thickness of the Liguan Formation and the Zhushadong Formation, the greater the number and type of layers with paleoseismic records, and the higher the earthquake intensity reflected by associations of seismic records. This evidence indicates that tectonic taphrogenesis accompanied by strong earthquake events occurred in the Yishu fault zone during the initial stage of the Caledonian Movement, which embodied the break-up of the Sino-Korean Plate along the Paleo-Tanlu fault zone at that time. 展开更多
关键词 Caledonian Movement paleoseismic record tectonic taphrogenesis Yishu fault zone
下载PDF
Crustal structure in Xiaojiang fault zone and its vicinity 被引量:12
11
作者 Chunyong Wang Hai Lou +3 位作者 Xili Wang Jiazheng Qin Runhai Yang Jinming Zhao 《Earthquake Science》 CSCD 2009年第4期347-356,共10页
Based on the integrative interpretation of travel-time data and amplitude information obtained from the deep seismic sounding experiment on the Chuxiong-Luoping profile, eastern Yunnan province, carried out in January... Based on the integrative interpretation of travel-time data and amplitude information obtained from the deep seismic sounding experiment on the Chuxiong-Luoping profile, eastern Yunnan province, carried out in January of 2005, we present a 2-D P wave velocity structure along the profile. The crustal structure shows remarkable contrasts between the two sides of the Xiaojiang fault zone, although the whole profile is situated within the Yangtze platform. The average P wave velocities of the crust on the west and east sides of the fault zone are 6.21 km/s and 6.32 km/s, respectively, and the crustal thicknesses are 41 km and 45 km, respectively. These results imply that the crust to the east of the Xiaojiang fault zone presents characteristics of crustal structure in a stable platform, while the crust to the west is complicated with a lower velocity zone in middle of the upper crust. The average velocity of 6.21 km/s is lower than the global continental crustal average (6.30 km/s), indicating that the region is tectonically active. According to the lateral variation of velocity and depth of interfaces (including the Moho), it is inferred that the Xiaojiang fault zone has cut through the whole crust. It is also deduced that existence of low velocity zone in middle of the upper crust is conducive to the south-southeastern sliding of the Sichuan- Yunnan (Chuan-Dian) rhombus block. 展开更多
关键词 Xiaojiang fault zone crustal structure deep seismic sounding SEISMICITY low velocity zone
下载PDF
Fault zone structures of northern and southern portions of the main central fault generated by the 2008 Wenchuan earthquake using fault zone trapped waves 被引量:14
12
作者 Songlin Li Xiaoling Lai +1 位作者 Zhixiang Yao Qing Yang 《Earthquake Science》 CSCD 2009年第4期417-424,共8页
The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces o... The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces of the main-shock were deployed in July and recorded a great amount of aftershocks. This paper focuses on the data interpretation of two arrays across the central main fault, the northern array line 1 and southern array line 3. The fault zone trapped waves recorded by the two arrays were used to study the structure of the central main fault and the difference between the northern and southern portions. The results show that the widths of the rupture zone are about 170-200 m and 200-230 m for northern and southern portions respectively. And the corresponding dip angles are 80° and 70°. The seismic velocity inside the fracture zone is about one half of the host rock. By comparison, the northern portion of the rupture zone is slightly narrower and steeper than the southern portion. Besides these differences, one more interesting and important difference is the positions of the rupture zone with respect to surface breaking traces. At the northern portion, the rupture zone is centered at the surface breaking trace, while at the southern portion it is not but is shifted to the northwest. This difference reflects the difference of rupture behaviors between two portions of the central main fault. The width of the rupture zone is smaller than that of MS.1 Kunlun earthquake though these two earthquakes have almost the same magnitudes. Multiple ruptures may be one factor to cause the narrower rupture zone. 展开更多
关键词 Wenchuan earthquake seismic rupture zone fault zone trapped waves
下载PDF
Rock Damage Structure of the South Longmen-Shan Fault in the 2008 M8 Wenchuan Earthquake Viewed with Fault-Zone Trapped Waves and Scientific Drilling 被引量:9
13
作者 LI Yonggang XU Zhiqin LI Haibing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第2期444-467,共24页
This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.I... This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect. 展开更多
关键词 Rupture zone rock damage structure scientific drilling fault-zone trapped waves Wenchuan Earthquake Longmen-Shan fault
下载PDF
Hydrocarbon migration and accumulation along the fault intersection zone-a case study on the reef-flat systems of the No.1 slope break zone in the Tazhong area, Tarim Basin 被引量:14
14
作者 Xiang Caifu Pang Xiongqi +4 位作者 Yang Wenjing Wang Jianzhong LiQiming Liu Luofu Li Yanqun 《Petroleum Science》 SCIE CAS CSCD 2010年第2期211-225,共15页
Understanding hydrocarbon migration and accumulation mechanisms is one of the key scientif ic problems that should be solved for effective hydrocarbon exploration in the superimposed basins developed in northwest Chin... Understanding hydrocarbon migration and accumulation mechanisms is one of the key scientif ic problems that should be solved for effective hydrocarbon exploration in the superimposed basins developed in northwest China. The northwest striking No.1 slope break zone, which is a representative of superimposed basins in the Tarim Basin, can be divided into five parts due to the intersection of the northeast strike-slip faults. Controlled by the tectonic framework, the types and properties of reservoirs and the hydrocarbon compositions can also be divided into five parts from east to west. Anomalies of all the parameters were found on the fault intersection zone and weakened up-dip along the structural ridge away from it. Thus, it can be inferred that the intersection zone is the hydrocarbon charging position. This new conclusion differs greatly from the traditional viewpoint, which believes that the hydrocarbon migrates and accumulates along the whole plane of the No.1 slope break zone. The viewpoint is further supported by the evidence from the theory of main pathway systems, obvious improvement of the reservoir quality (2-3 orders of magnitude at the intersection zone) and the formation mechanisms of the fault intersection zone. Differential hydrocarbon migration and entrapment exists in and around the strike- slip faults. This is controlled by the internal structure of faults. It is concluded that the more complicated the fault structure is, the more significant the effects will be. If there is a deformation band, it will hinder the cross fault migration due to the common feature of two to four orders of magnitude reduction in permeability. Otherwise, hydrocarbons tend to accumulate in the up-dip structure under the control of buoyancy. Further research on the internal fault structure should be emphasized. 展开更多
关键词 Geologic chromatographic effect fault intersection zone differential hydrocarbon migration and accumulation superimposed basin Tazhong area Tarim Basin
下载PDF
Kinematic History and Changes in the Tectonic Stress Regime during the Cenozoic along the Qinling and Southern Tanlu Fault Zones 被引量:12
15
作者 ZHANG Yueqiao Pierre Vergèly +3 位作者 Jacques-Louis Mercier WANG Yongmin ZHANG Yong HUANG Dezhi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1999年第3期264-274,共11页
Since the mid-late Eocene, North China has been subjected to extensional stress, resulting in the formation and development of basins. The dynamic origin of this crustal extension has long been an issue of debate. Thi... Since the mid-late Eocene, North China has been subjected to extensional stress, resulting in the formation and development of basins. The dynamic origin of this crustal extension has long been an issue of debate. This paper presents the results of kinematic analyses of faults obtained from two seperated areas in North China. In the Weihe graben situated on the southernmost margin of the Ordos block, analyses of fault kinematics were coupled with an analysis of the basin's subsidence history. Three successive extensional tectonic phases accompaning the basin's formation and development have been distinguished. The Palaeogene extension was oriented in a WNW-ESE direction; the Neogene extension in a NE-SW direction and the Pliocene-Quaternary extension in a NW-SE direction. Such changes have also been recorded by fault kinematics along the southern Tanlu fault zone. This has been demonstrated by three successive sets of fault striations indicating normal dip slip resulting from NW-SE extension, then left-lateral slip with a normal component resulting from NE-SW extension, and right-lateral slip with a minor normal component, respectively. The kinematic history of faults and their chronological evolution indicate changes in continental dynamics acting in North China over Cenozoic time. 展开更多
关键词 fault kinematics TECTONIC stress regime QINLING and Tanlu fault zoneS
下载PDF
Thermal Evolution of the Tanlu Fault Zone on the Eastern Margin of the Dabie Mountains and Its Tectonic Implications 被引量:14
16
作者 ZHUGuang HOUMinjin +2 位作者 WANGYongsheng LIUGuosheng NIUManlan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第4期940-953,共14页
Five samples of muscovite from mylonites of the earlier Tanlu ductile shear zone on the eastern margin of the Dabie Mountains yield 40Ar/39Ar ages ranging from 178 Ma to 196 Ma. Three of them have reliable plateau age... Five samples of muscovite from mylonites of the earlier Tanlu ductile shear zone on the eastern margin of the Dabie Mountains yield 40Ar/39Ar ages ranging from 178 Ma to 196 Ma. Three of them have reliable plateau ages of 188.7±0.7 Ma, 189.7±0.6 Ma and 192.5±0.7 Ma respectively, which indicates a syn-orogenic, sinistral strike-slip thermal event. This displacement movement derived from the continent-continent collision of the North and South China blocks took place in the Early Jurassic and after uplifting of high-pressure to ultrahigh-pressure slabs to the mid-crust. It is suggested that during the collision the Tanlu fault zone was an intracontinental transform fault caused by differential subduction speeds. The 40Ar/39Ar ages of mylonite whole-rock and muscovite from the later Tanlu ductile shear zone suggest another sinistral strike-slip cooling event at 128 Ma. During this strike-slip faulting, large-scale intrusion and doming uplift occurred in the eastern part of the Dabie orogenic belt. Data of K-feldspar 40Ar/39Ar MDD and apatite fission-track analysis from metamorphic rocks indicate two high-speed cooling events experienced by the Tanlu fault zone, which took place at 90 Ma and 45-58 Ma respectively. They correspond respectively to two phases of extensional activities in the Late Cretaceous and Eogene as well as development of the Qianshan fault-controlled basin to the east of the Tanlu fault zone. The cooling times recorded by K-feldspar and apatite show that the uplifting in the Dabie orogenic belt occured earlier than that on the eastern margin occupied by the Tanlu fault zone. The above phenomena suggest that the uplifting of the Dabie orogenic belt during the Late Cretaceous to Eogene was not controlled by the Tanlu normal faulting, but as a result of the lithospheric delamination. 展开更多
关键词 Tanlu fault zone Dabie orogenic belt 40Ar/39Ar age fission-track age thermal event
下载PDF
Recent advances in imaging crustal fault zones: a review 被引量:8
17
作者 Hongfeng Yang 《Earthquake Science》 CSCD 2015年第2期151-162,共12页
Crustal faults usually have a fault core and surrounding regions of brittle damage, forming a low-velocity zone (LVZ) in the immediate vicinity of the main slip interface. The LVZ may amplify ground motion, influenc... Crustal faults usually have a fault core and surrounding regions of brittle damage, forming a low-velocity zone (LVZ) in the immediate vicinity of the main slip interface. The LVZ may amplify ground motion, influence rupture propagation, and hold important information of earthquake physics. A number of geophysical and geodetic methods have been developed to derive high-resolution structure of the LVZ. Here, I review a few recent approaches, including ambient noise cross-correlation on dense across-fault arrays and GPS recordings of fault-zone trapped waves. Despite the past efforts, many questions concerning the LVZ structure remain unclear, such as the depth extent of the LVZ. High-quality data from larger and denser arrays and new seismic imaging technique using larger portion of recorded waveforms, which are currently under active development, may be able to better resolve the LVZ structure. In addition, effects of the alongstrike segmentation and gradational velocity changes across the boundaries between the LVZ and the host rock on rupture propagation should be investigated by conducting comprehensive numerical experiments. Furthermore, high-quality active sources such as recently developed large-volume airgun arrays provide a powerful tool to continuously monitor temporal changes of fault-zone properties, and thus can advance our understanding of fault zone evolution. 展开更多
关键词 fault zone structure fault zone waves Earthquake rupture Temporal changes
下载PDF
Near-surface Geothermal Gradient Observation and Geothermal Analyses in the Xianshuihe Fault Zone,Eastern Tibetan Plateau 被引量:8
18
作者 LIU Qianqian SHI Yanan +4 位作者 WEI Dongping HAN Peng CHEN Shunyun LIU Peixun LIU Liqiang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期414-428,共15页
The Xianshuihe fault(XSHF) zone, characterized by intense tectonic activity, is located at the southwest boundary of the Bayan Har block, where several major earthquakes have occurred, including the 2008 Wenchuan an... The Xianshuihe fault(XSHF) zone, characterized by intense tectonic activity, is located at the southwest boundary of the Bayan Har block, where several major earthquakes have occurred, including the 2008 Wenchuan and the 2013 Lushan earthquakes. This study analysed underground temperature sequence data for four years at seven measuring points at different depths(maximum depth: 18.9 m) in the southeastern section of the XSHF zone. High-frequency atmospheric noise was removed from the temperature sequences to obtain relatively stable temperature fields and heat fluxes near the measurement points. Our measurements show that the surrounding bedrock at(the seven stations distributed in the fault zone) had heat flux values range from-41.0 to 206 m W/m^2, with a median value of 54.3 m W/m^2. The results indicate a low heat flux in the northern section of DaofuKangting and a relatively high heat flux in the southern section of Kangting, which is consistent with the temperature distributions of the hot springs near the fault. Furthermore, our results suggest that the heat transfer in this field results primarily from stable underground heat conduction. In addition, the underground hydrothermal activity is also an obvious factor controlling the geothermal gradient. 展开更多
关键词 temperature sequence records geothermal gradient heat flow heat flux Xianshuihe fault zone Tibet Plateau Proto-Tethys
下载PDF
Characteristics of Late-Quaternary Activity and Seismic Risk of the Northeastern Section of the Longmenshan Fault Zone 被引量:6
19
作者 WANG Mingming ZHOU Bengang +2 位作者 YANG Xiaoping XIE Chao GAO Xianglin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第6期1674-1689,共16页
Following the 2008 Wenchuan M8 earthquake,the seismic risk of the northeastern section of the Longmenshan fault zone and the adjacent Hanzhong basin has become an issue that receives much concern.It is facing,however,... Following the 2008 Wenchuan M8 earthquake,the seismic risk of the northeastern section of the Longmenshan fault zone and the adjacent Hanzhong basin has become an issue that receives much concern.It is facing,however,the problem of a lack of sufficient data because of little previous work in these regions.The northeastern section of the Longmenshan fault zone includes three major faults:the Qingchuan fault,Chaba-Lin'ansi fault,and Liangshan south margin fault,with the Hanzhong basin at the northern end.This paper presents investigations of the geometry,motion nature,and activity ages of these three faults,and reveals that they are strike slip with normal faulting,with latest activity in the Late Pleistocene.It implies that this section of the Longmenshan fault zone has been in an extensional setting,probably associated with the influence of the Hanzhong basin.Through analysis of the tectonic relationship between the Longmenshan fault zone and the Hanzhong basin,this work verifies that the Qingchuan fault played an important role in the evolution of the Hanzhong basin,and further studies the evolution model of this basin.Finally,with consideration of the tectonic setting of the Longmenshan fault zone and the Hanzhong basin as well as seismicity of surrounding areas,this work suggests that this region has no tectonic conditions for great earthquakes and only potential strong events in the future. 展开更多
关键词 Seismic risk northeastern Longmenshan fault zone Hanzhong basin Late-Quaternary activity
下载PDF
Deformation of the Most Recent Co-seismic Surface Ruptures Along the Garzê–Yushu Fault Zone(Dangjiang Segment)and Tectonic Implications For the Tibetan Plateau 被引量:3
20
作者 WU Jiwen HUANG Xuemeng XIE Furen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期443-454,共12页
The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 〉 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fau... The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 〉 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fault and depend on the structure of the upper crust as well as the pre-existing tectonics. Therefore, the most recent co-seismic surface ruptures along the Garzê–Yushu fault zone(Dangjiang segment) reveal the surface deformation of the central Tibetan Plateau. Remote sensing images and field investigations suggest a 85 km long surface rupture zone(striking NW-NWW), less than 50 m wide, defined by discontinuous fault scarps, right-stepping en echelon tensional cracks and left-stepping mole tracks that point to a left-lateral strike-slip fault. The gullies that cross fault scarps record systematic left-lateral offsets of 1.8 m to 5.0 m owing to the most recent earthquake, with moment magnitude of about M 7.5, in the Dangjiang segment. Geological and geomorphological features suggest that the spatial distribution of the 1738 co-seismic surface rupture zone was controlled by the pre-existing active Garzê–Yushu fault zone(Dangjiang segment). We confirm that the Garzê–Yushu fault zone, a boundary between the Bayan Har Block to the north and the Qiangtang Block to the south, accommodates the eastward extrusion of the Tibetan Plateau and generates strong earthquakes that release the strain energy owing to the relative motion between the Bayan Har and Qiangtang Blocks. 展开更多
关键词 co-seismic surface rupture zone strike-slip fault Dangjiang fault Garzê–Yushu fault zone Tibetan Plateau Proto-Tethys
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部