期刊文献+
共找到1,097,650篇文章
< 1 2 250 >
每页显示 20 50 100
Characterization and spatial analysis of coseismic landslides triggered by the Luding Ms 6.8 earthquake in the Xianshuihe fault zone, Southwest China 被引量:1
1
作者 GUO Changbao LI Caihong +10 位作者 YANG Zhihua NI Jiawei ZHONG Ning WANG Meng YAN Yiqiu SONG Deguang ZHANG Yanan ZHANG Xianbing WU Ruian CAO Shichao SHAO Weiwei 《Journal of Mountain Science》 SCIE CSCD 2024年第1期160-181,共22页
On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage ... On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area. 展开更多
关键词 Luding earthquake Coseismic landslides Remote sensing interpretation Spatial distribution Xianshuihe fault Earthquake fault
下载PDF
Research status and prospects of the fractal analysis of metal material surfaces and interfaces
2
作者 Qinjin Dai Xuefeng Liu +2 位作者 Xin Ma Shaojie Tian Qinghe Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期20-38,共19页
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal... As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future. 展开更多
关键词 metal material surfaces and interfaces fractal analysis fractal dimension HOMOGENEITY
下载PDF
Analysis of faulting destruction and water supply pipeline damage from the first mainshock of the February 6,2023 Türkiye earthquake doublet 被引量:1
3
作者 Xiaoqing Fan Libao Zhang +2 位作者 Juke Wang Yefei Ren Aiwen Liu 《Earthquake Science》 2024年第1期78-90,共13页
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw... In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized. 展开更多
关键词 Türkiye earthquake fault displacement near-fault ground motion velocity pulse water supply pipeline
下载PDF
Semi-analytical solution for mechanical analysis of tunnels crossing strike-slip fault zone considering nonuniform fault displacement and uncertain fault plane position
4
作者 YANG Heng-hong WANG Ming-nian +1 位作者 YU Li ZHANG Xiao 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2116-2136,共21页
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e... The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively. 展开更多
关键词 strike-slip fault tunnel engineering semi-analytical solution fault zone width nonuniform fault displacement uncertain fault plane position
下载PDF
Multilevel analysis of the central-peripheral-target organ pathway:contributing to recovery after peripheral nerve injury
5
作者 Xizi Song Ruixin Li +6 位作者 Xiaolei Chu Qi Li Ruihua Li Qingwen Li Kai-Yu Tong Xiaosong Gu Dong Ming 《Neural Regeneration Research》 SCIE CAS 2025年第10期2807-2822,共16页
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes... Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery. 展开更多
关键词 central nervous system central peripheral target organ multilevel pathological analysis nerve regeneration peripheral nerve injury peripheral nervous system target organs therapeutic approach
下载PDF
Analysis of multiple-faults of high-voltage circuit breakers based on non-negative matrix decomposition
6
作者 Yongrong Zhou Zhaoxing Ma +1 位作者 Hao Chen Ruihua Wang 《Global Energy Interconnection》 EI CSCD 2024年第2期179-189,共11页
High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faul... High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faults.This study proposes a component separation method to detect multiple mechanical faults in circuit breakers that can achieve online real-time monitoring.First,a model and strategy are presented for obtaining mechanical voiceprint signals from circuit breakers.Subsequently,the component separation method was used to decompose the voiceprint signals of multiple faults into individual component signals.Based on this,the recognition of the features of a single-fault voiceprint signal can be achieved.Finally,multiple faults in high-voltage circuit breakers were identified through an experimental simulation and verification of the circuit breaker voiceprint signals collected from the substation site.The research results indicate that the proposed method exhibits excellent performance for multiple mechanical faults,such as spring structures and loose internal components of circuit breakers.In addition,it provides a reference method for the real-time online monitoring of high-voltage circuit breakers. 展开更多
关键词 High voltage circuit breaker Signal separation MONITOR Multiple faults Power system
下载PDF
Optimizing Optical Fiber Faults Detection:A Comparative Analysis of Advanced Machine Learning Approaches
7
作者 Kamlesh Kumar Soothar Yuanxiang Chen +2 位作者 Arif Hussain Magsi Cong Hu Hussain Shah 《Computers, Materials & Continua》 SCIE EI 2024年第5期2697-2721,共25页
Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin o... Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin optical networks introduce challenges that can jeopardize the network with a variety of faults.The existingliterature witnessed various partial or inadequate solutions.On the other hand,Machine Learning(ML)hasrevolutionized as a promising technique for fault detection and prevention.Unlike traditional fault managementsystems,this research has three-fold contributions.First,this research leverages the ML and Deep Learning(DL)multi-classification system and evaluates their accuracy in detecting six distinct fault types,including fiber cut,fibereavesdropping,splicing,bad connector,bending,and PC connector.Secondly,this paper assesses the classificationdelay of each classification algorithm.Finally,this work proposes a fiber optics fault prevention algorithm thatdetermines to mitigate the faults accordingly.This work utilized a publicly available fiber optics dataset namedOTDR_Data and applied different ML classifiers,such as Gaussian Naive Bayes(GNB),Logistic Regression(LR),Support Vector Machine(SVM),K-Nearest Neighbor(KNN),Random Forest(RF),and Decision Tree(DT).Moreover,Ensemble Learning(EL)techniques are applied to evaluate the accuracy of various classifiers.In addition,this work evaluated the performance of DL-based Convolutional Neural Network and Long-Short Term Memory(CNN-LSTM)hybrid classifier.The findings reveal that the CNN-LSTM hybrid technique achieved the highestaccuracy of 99%with a delay of 360 s.On the other hand,EL techniques improved the accuracy in detecting fiberoptic faults.Thus,this research comprehensively assesses accuracy and delay metrics for various classifiers andproposes the most efficient attack detection system in fiber optics. 展开更多
关键词 Fiber optics fault detection multiclassification machine learning ensemble learning
下载PDF
Field survey and analysis on near-fault severely damaged high-speed railway bridge in 2022 M6.9 Menyuan earthquake
8
作者 Lin Xuchuan Liu Fuxiang Shan Wenchen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期1043-1055,共13页
The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this ... The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this type have been widely used for rapidly constructing the high-speed railway network,but few bridges have been tested by near-fault devastating earthquakes.The potential severe impact of the earthquake on the high-speed railway is not only the safety of the infrastructure,trains and passengers,but also economic loss due to interrupted railway use.Therefore,a field survey was carried out immediately after the earthquake to collect time-sensitive data.The damage to the bridge was carefully investigated,and quantitative analyses were conducted to better understand the mechanism of the bridge failure.It was found that seismic action perpendicular to the bridge’s longitudinal direction caused severe damage to the girders and rails,while none of the piers showed obvious deformation or cracking.The maximum values of transverse displacement,out-of-plane rotation and twisting angle of girders reached 212.6 cm,3.1 degrees and 19.9 degrees,respectively,causing severe damage to the bearing supports and anti-seismic retaining blocks.These observations provide a basis for improving the seismic design of high-speed railway bridges located in near-fault areas. 展开更多
关键词 Menyuan earthquake field survey high-speed railway bridge near fault seismic damage
下载PDF
Simulation and Analysis of Cascading Faults in Integrated Heat and Electricity Systems Considering Degradation Characteristics
9
作者 Hang Cui Hongbo Ren +3 位作者 Qiong Wu Hang Lv Qifen Li Weisheng Zhou 《Energy Engineering》 EI 2024年第3期581-601,共21页
Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading fau... Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method. 展开更多
关键词 Cascading fault degradation characteristics integrated heat and electricity system multi-energy flow
下载PDF
Analysis of traffic safety in airport aircraft activity areas based on bayesian networks and fault trees
10
作者 Ruijun Guo Jiawen Wu +2 位作者 Fan Ji Wanxiang Wang Yuan Yin 《Digital Transportation and Safety》 2024年第1期8-18,共11页
To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport air... To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport aircraft activity areas.It identified influencing factors in the aircraft activity area from the perspectives of person-vehicle-road-environment-management and analyzed their relationships.The Bayesian network was utilized to determine initial probabilities for each influencing factor.Findings indicated a relatively high overall safety level in the airport's road traffic system.Accident trees were employed to qualitatively and quantitatively analyze common human-vehicle accident patterns.The initial probabilities obtained from the Bayesian network served as basic event probabilities in the accident tree to determine the occurrence probability of the top event.Taking a 4F airport in China as an example,accident cause analysis identified five important risk sources in human-vehicle accidents,including blind spots for special vehicles,illegal driving by drivers,pedestrians violating regulations,passengers entering restricted areas,and blind spots at intersections.Corresponding safety management measures were formulated.The study concluded that the integration of Bayesian networks and accident trees effectively determines accident probabilities and offers specific solutions,thus playing a crucial role in enhancing road traffic safety management within aviation airports. 展开更多
关键词 bayesian network fault tree analysis minimum cut set structural importance accident cause analysis
下载PDF
Determining the surface fault-rupture hazard zone for the Pazarcık segment of the East Anatolian fault zone through comprehensive analysis of surface rupture from the February 6,2023,Earthquake(Mw 7.7)
11
作者 Mustafa SOFTA 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2646-2663,共18页
Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel... Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel insights into physical criteria for delineating surface fault-rupture hazard zones(SRHZs)along ruptured strike-slip faults.To achieve this objective,three trench studies across the surface rupture were conducted on the Pazarcık segment of the EAFZ to collect field data,and earthquake recurrence intervals were interpreted using Bayesian statistics from previously conducted paleoseismological trenchings.The results of the proposed model indicate that the Pazarcık segment produced five significant surface-rupturing earthquakes in the last∼11 kyr:E1:11.13±1.74 kyr,E2:7.62±1.20 kyr,E3:5.34±1.05 kyr,E4:1.82±0.93 kyr,and E5:0.35±0.11 kyr.In addition,the recurrence intervals of destructive earthquakes on the subject in question range from 0.6 kyr to 4.8 kyr.Considering that the last significant earthquake occurred in 1513,the longest time since the most recent surface fault rupturing earthquake on this particular segment was 511 years.These results indicate that,in terms of the theoretical recurrence interval of earthquakes that can create surface ruptures on the Pazarcık segment,the period in which the February 6,2023,earthquake occurred was within the end of the expected return period.As a result,the potential for a devastating earthquake in the near future is not foreseen on the same fault.Finally,the SRHZ proposed for the Pazarcık section of Gölbaşıvillage was calculated as a 61-meter-wide offset on the fault lineament to reduce the negativities that may occur in the ruptured area in the future.It is recommended to take into account this width in the settlement of this area and nearby areas. 展开更多
关键词 Surface rupture Earthquake mitigation Recurrence interval Pazarcık segment East Anatolian fault Zone(EAFZ)
下载PDF
Fractal analysis of major faults and fractal dimension of lineaments in the Indo-Gangetic Plain on a regional scale
12
作者 Vipin Chauhan Jagabandhu Dixit 《Earthquake Science》 2024年第2期107-121,共15页
The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the... The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the degree of deformation and fractal dimension.The zone between the Main Boundary Thrust(MBT)and the Main Central Thrust(MCT)in the Himalayan Mountain Range(HMR)experienced large variations in earthquake magnitude,which were identified by Number-Size(NS)fractal modeling.The central IGP zone experienced only moderate to low mainshock levels.Fractal analysis of earthquake epicenters reveals a large scattering of earthquake epicenters in the HMR and central IGP zones.Similarly,the fault fractal analysis identifies the HMR,central IGP,and south-western IGP zones as having more faults.Overall,the seismicity of the study region is strong in the central IGP,south-western IGP,and HMR zones,moderate in the western and southern IGP,and low in the northern,eastern,and south-eastern IGP zones. 展开更多
关键词 geospatial analysis fractal modeling seismicity pattern fractal dimension
下载PDF
Optical Fibre Communication Feature Analysis and Small Sample Fault Diagnosis Based on VMD-FE and Fuzzy Clustering
13
作者 Xiangqun Li Jiawen Liang +4 位作者 Jinyu Zhu Shengping Shi Fangyu Ding Jianpeng Sun Bo Liu 《Energy Engineering》 EI 2024年第1期203-219,共17页
To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based ... To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition(VMD),fuzzy entropy(FE)and fuzzy clustering(FC).Firstly,based on the OTDR curve data collected in the field,VMD is used to extract the different modal components(IMF)of the original signal and calculate the fuzzy entropy(FE)values of different components to characterize the subtle differences between them.The fuzzy entropy of each curve is used as the feature vector,which in turn constructs the communication optical fibre feature vector matrix,and the fuzzy clustering algorithm is used to achieve fault diagnosis of faulty optical fibre.The VMD-FE combination can extract subtle differences in features,and the fuzzy clustering algorithm does not require sample training.The experimental results show that the model in this paper has high accuracy and is relevant to the maintenance of communication optical fibre when compared with existing feature extraction models and traditional machine learning models. 展开更多
关键词 Optical fibre fault diagnosis OTDR curve variational mode decomposition fuzzy entropy fuzzy clustering
下载PDF
Seismic response and correlation analysis of a pile-supported wharf to near-fault pulse-like ground motions
14
作者 Wang Jianfeng Su Lei +2 位作者 Xie Libo Ling Xianzhang Ju Peng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期883-897,共15页
Earthquake investigations have shown that near-fault pulse-like(NF-P)ground motions have unique characteristics compared to near-fault non-pulse-like(NF-NP)and far-field(FF)ground motions.It is necessary to study the ... Earthquake investigations have shown that near-fault pulse-like(NF-P)ground motions have unique characteristics compared to near-fault non-pulse-like(NF-NP)and far-field(FF)ground motions.It is necessary to study the seismic response of pile-supported wharf(PSW)structures under NF-P ground motions.In this study,a three-dimensional finite element numerical model is created to simulate a PSW.By imparting three types of ground motion,the engineering demand parameters(EDPs)of PSW under NF-P ground motions were analyzed and compared,in which EDPs are the maximum displacement and bending moment of the piles.Twenty intensity measures(IMs)were selected to characterize the properties of ground motions.The correlation between IMs and EDPs was explored.The results show that the piles present larger displacement and bending moment under NF-P ground motions compared to NF-NP and FF ground motions.None of the IMs have a high correlation with EDPs under NF-P ground motions,and these IMs are more applicable to FF ground motions.The correlation coefficients between EDPs and IMs under three types of ground motion were obtained,which will provide a valuable reference for the seismic design of PSWs. 展开更多
关键词 pile-supported wharf correlation analysis near-fault pulse-like ground motion intensity measure seismic response
下载PDF
Analysis and Research on 10kV Distribution Network Faults
15
作者 Jiyuan Wang Ouzhu Ciren +1 位作者 Xiaokang Zhou Ruijin Zhu 《Journal of Electronic Research and Application》 2024年第3期89-96,共8页
The 10kV distribution network is an essential component of the power system,and its stable operation is crucial for ensuring reliable power supply.However,various factors can lead to faults in the distribution network... The 10kV distribution network is an essential component of the power system,and its stable operation is crucial for ensuring reliable power supply.However,various factors can lead to faults in the distribution network.In order to enhance the safety and reliability of power distribution,this paper focuses on the analysis of faults in the 10kV distribution network caused by natural factors,operational factors,human factors,and equipment factors.It elucidates the various hazards resulting from distribution network faults and proposes corresponding preventive measures for different types of faults in the 10kV distribution network.The aim is to mitigate or reduce the impact of distribution network faults,ensuring the safe and stable operation of the distribution system. 展开更多
关键词 10kV distribution network Line faults fault hazards Preventive measures
下载PDF
Seismic analysis of the active character of the Taihang Mountain piedmont fault 被引量:4
16
作者 徐明才 高景华 +2 位作者 荣立新 王广科 王小江 《Applied Geophysics》 SCIE CSCD 2010年第4期392-398,401,共8页
The Taihang Mountain piedmont fault is a large-scale structure zone in north and east China which cross Beijing,with the NE-NNE extent spans approximately 620 km.It is very important to determine the fault zone activi... The Taihang Mountain piedmont fault is a large-scale structure zone in north and east China which cross Beijing,with the NE-NNE extent spans approximately 620 km.It is very important to determine the fault zone activity due to the close relation of active structures and earthquakes.Regarding the fault activity,there are three different opinions:1) it is a large deep fault zone;2) it is an active fault zone and an earthquake structure belt;and 3) it is not an earthquake structure belt.In order to ascertain the active character of the fault,the deep tectonic setting and the activity since the Quaternary were investigated using recent seismic and drilling data to make a joint interpretation.The investigation results show that the Taihang Mountain piedmont fault is not a large lithospheric fault because the early middle Pleistocene(Q(P2)) layers are offset by the fault and the late middle Pleistocene(Q(P2)) and late Pleistocene layers are not offset by the fault.We determine that the Taihang Mountain piedmont fault in the area is not an active fault and is also not a large lithospheric fault.This study result provides important geological and geophysical data for city planning and construction in Hebei province and, especially,has great significance for seismic hazard assessment of the capital area. 展开更多
关键词 Taihang Mountain piedmont fault active fault seismic exploration drilling borehole verification
下载PDF
Insulation fault diagnosis based on group grey relational grade analysis method for power transformers 被引量:5
17
作者 董立新 肖登明 刘奕路 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期175-179,共5页
Utilising dissolved gases analysis, a new insulation fault diagnosis methodfor power transformers is proposed. This method is based on the group grey relational grade analysismethod. First, according to the fault type... Utilising dissolved gases analysis, a new insulation fault diagnosis methodfor power transformers is proposed. This method is based on the group grey relational grade analysismethod. First, according to the fault type and grey reference sequence structure, some typicalfault samples are divided into several sets of grey reference sequences. These sets are structuredas one grey reference sequence group. Secondly, according to a new calculation method of the greyrelational coefficient, the individual relational coefficient and grade are computed. Then accordingto the given calculation method for the group grey relation grade, the group grey relational gradeis computed and the group grey relational grade matrix is structured. Finally, according to therelational sequence, the insulation fault is identified for power transformers. The results of alarge quantity of instant analyses show that the proposed method has higher diagnosis accuracy andreliability than the three-ratio method and the traditional grey relational method. It has goodclassified diagnosis ability and reliability. 展开更多
关键词 dissolved gases analysis group grey relational grade fault diagnosis
下载PDF
Fractal Analysis of Spatial Fault Distribution in the Southern South China Sea 被引量:3
18
作者 姚衍桃 詹文欢 《Marine Science Bulletin》 CAS 2009年第1期70-81,共12页
Fractal geometry can effectively quantify naturally nonlinear or much complicated phenomena, and fractal dimension is the quantitative parameter. In this paper, we applied fractal geometry to analyze spatial fault dis... Fractal geometry can effectively quantify naturally nonlinear or much complicated phenomena, and fractal dimension is the quantitative parameter. In this paper, we applied fractal geometry to analyze spatial fault distribution of the southern South China Sea. Calculation results indicate that the spatial fault distribution of this area have remarkable fractal features in a non-scale interval of 25 - 250 km, with fractal dimensions of 1.660 1, 1.387 5, and 1.269 3 for all faults, NE-trending faults and NW-trending faults, respectively. These dimensions (capacity dimensions), obtained by box-counting method, represent well the characteristics of spatial fault distribution. Displayed by isoline-maps of fractal dimensions, faults in the study area arrange symmetrically along the spreading axis of the Southwest Sub-basin, and density of the NE-trending faults supplements to that of the NW-trending faults, revealing a property of mutual restriction between these two groups of faults. At last, by correlating the fractal features of spatial fault distribution with the evolution of the South China Sea and the distribution of oil or gas basins, we tried to reveal their relationships. 展开更多
关键词 FRACTAL box-counting method faultS southern South China Sea
下载PDF
Analysis of radar fault prediction based on combined model 被引量:1
19
作者 邵延君 马春茂 潘宏侠 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第1期44-47,共4页
Based on modeling principle of GM(1,1)model and linear regression model,a combined prediction model is established to predict equipment fault by the fitting of two models.The new prediction model takes full advantag... Based on modeling principle of GM(1,1)model and linear regression model,a combined prediction model is established to predict equipment fault by the fitting of two models.The new prediction model takes full advantage of prediction information provided by the two models and improves the prediction precision.Finally,this model is introduced to predict the system fault time according to the output voltages of a certain type of radar transmitter. 展开更多
关键词 grey linear regression model filtting radar fault prediction
下载PDF
Simulation Research of Fault Model of Detecting Rotor Dynamic Eccentricity in Brushless DC Motor Based on Motor Current Signature Analysis 被引量:12
20
作者 赵向阳 葛文韬 《中国电机工程学报》 EI CSCD 北大核心 2011年第36期I0011-I0011,共1页
基于Ansoft/Maxwell设置动态偏心故障,建立求解电机电感和磁链的有限元模型,通过仿真,证明了将感应电机动态偏心故障的特征频率经过简化后,同样适用于无刷直流电动机。基于Ansoft/Simplorer建立无刷直流电动机系统的仿真模型。在... 基于Ansoft/Maxwell设置动态偏心故障,建立求解电机电感和磁链的有限元模型,通过仿真,证明了将感应电机动态偏心故障的特征频率经过简化后,同样适用于无刷直流电动机。基于Ansoft/Simplorer建立无刷直流电动机系统的仿真模型。在电机稳态运行下,对定子电流进行傅里叶分析,研究并建立基于定子电流监测动态偏心故障的仿真模型:动态偏心故障与特征频率的关系、动态偏心故障程度与特征频率幅值的关系。进而研究了无刷直流电动机稳态运行时转速波动对偏心故障监测的影响。仿真结果表明,转子偏心程度加大,特征频率的幅值增加。 展开更多
关键词 电机转子 故障检测 电流特征 偏心 直流 仿真 模型 机械故障
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部