For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service...For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability,which often limits TSN scheduling performance in fault-free ideal states.So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism(GRFS)for data flow in PCN,which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding(CQF)model and fault recovery method,which reduces the impact of faults by simplified scheduling configurations of CQF and fault-tolerance of prioritizing the rerouting of faulty time-sensitive(TS)flows;considering that PF leading to changes in network topology is more appropriately solved by doing routing and time slot injection decisions hop-by-hop,and that reasonable network load can reduce the damage caused by PF and reserve resources for the rerouting of faulty TS flows,an optimization model for joint routing and scheduling is constructed with scheduling success rate as the objective,and with traffic latency and network load as constraints;to catch changes in TSN topology and traffic load,a D3QN algorithm based on a multi-head graph attention residual network(MGAR)is designed to solve the problem model,where the MGAR based encoder reconstructs the TSN status into feature embedding vectors,and a dueling network decoder performs decoding tasks on the reconstructed feature embedding vectors.Simulation results show that GRFS outperforms heuristic fault-tolerance algorithms and other benchmark schemes by approximately 10%in routing and scheduling success rate in ideal states and 5%in rerouting and rescheduling success rate in fault states.展开更多
Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be dep...Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery,ultimately enhancing the quality of the user experience.However,due to the typical placement of edge devices and nodes at the network’s periphery,these components may face various potential fault tolerance challenges,including network instability,device failures,and resource constraints.Considering the dynamic nature ofMEC,making high-quality content caching decisions for real-time mobile applications,especially those sensitive to latency,by effectively utilizing mobility information,continues to be a significant challenge.In response to this challenge,this paper introduces FT-MAACC,a mobility-aware caching solution grounded in multi-agent deep reinforcement learning and equipped with fault tolerance mechanisms.This approach comprehensively integrates content adaptivity algorithms to evaluate the priority of highly user-adaptive cached content.Furthermore,it relies on collaborative caching strategies based onmulti-agent deep reinforcement learningmodels and establishes a fault-tolerancemodel to ensure the system’s reliability,availability,and persistence.Empirical results unequivocally demonstrate that FTMAACC outperforms its peer methods in cache hit rates and transmission latency.展开更多
In this paper, the multisensor data fusion technique of a fault tolerant integrated navigation system is discussed. A neural approach for data fusion is proposed for multisensor integrated systems. The simulation res...In this paper, the multisensor data fusion technique of a fault tolerant integrated navigation system is discussed. A neural approach for data fusion is proposed for multisensor integrated systems. The simulation results show that this neural approach for data fusion is feasible.展开更多
High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i...High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.展开更多
The growing global population presents a significant challenge to ensuring food security,further compounded by the increasing threat of salinity to agricultural productivity.Wheat,a major staple food providing 20%of t...The growing global population presents a significant challenge to ensuring food security,further compounded by the increasing threat of salinity to agricultural productivity.Wheat,a major staple food providing 20%of the total caloric intake for humans,is susceptible to salinity stress.Developing new salttolerant wheat cultivars using wheat breeding techniques and genetic modifications is crucial to addressing this issue while ensuring the sustainability and efficiency of wheat production systems within the prevailing climate trend.This review overviews the current landscape in this field and explores key mechanisms and associated genetic traits that warrant attention within breeding programs.We contend that traditional approaches to breeding wheat for Na^(+)exclusion have limited applicability across varying soil salinity levels,rendering them inefficient.Moreover,we question current phenotyping approaches,advocating for a shift from whole-plant assessments to cell-based phenotyping platforms.Finally,we propose a broader use of wild wheat relatives and various breeding strategies to tap into their germplasm pool for inclusion in wheat breeding programs.展开更多
Photosynthetic cyanobacteria have shown great potential as“autotrophic cell factories”for the synthesis of fuels and chemicals.However,poor tolerance to various environmental stressors such as high light and heavy m...Photosynthetic cyanobacteria have shown great potential as“autotrophic cell factories”for the synthesis of fuels and chemicals.However,poor tolerance to various environmental stressors such as high light and heavy metals is an important factor limiting their economic viability.While numerous studies have focused on the tolerance mechanism of cyanobacteria to individual stressors,their response to simultaneous stresses remains to be recovered.To investigate the mechanism of cross tolerance to heavymetal Cd^(2+) and high light,the model cyanobacterium Synechocystis sp.PCC 6803 tolerant to both Cd^(2+) and high light was obtained via about 800 days’cross-adaptive laboratory evolution.Three evolutionary strains capable of tolerating both 5.5 μmol·L^(-1) Cd^(2+) and 600 μmol·m^(-2)·s^(-1) high light were successfully obtained,achieving about 83%enhancement of Cd^(2+) tolerance compared with the parent strain.The different response of parent and evolutionary strains to Cd^(2+) was elucidated via metabolomics.Furthermore,a total of 15 genes that were mutated during evolution were identified by whole-genome re-sequencing.Finally,by single-gene knockout and complementation analysis,four genes including ssl2615,sll1732,ssr1480,and sll1659 involved in the improvement of Cd^(2+) tolerance under high-light condition were successfully identified.This work explored the tolerance mechanism of Synechocystis sp.PCC 6803 to cadmium under high-light condition and provided valuable reference for deciphering multitolerance mechanism of cyanobacteria in the future.展开更多
In this paper, we study the enhanced hypercube, an attractive variant of the hypercube and obtained by adding some complementary edges from a hypercube, and focus on cycles embedding on the enhanced hypercube with fau...In this paper, we study the enhanced hypercube, an attractive variant of the hypercube and obtained by adding some complementary edges from a hypercube, and focus on cycles embedding on the enhanced hypercube with faulty vertices. Let Fu be the set of faulty vertices in the n-dimensional enhanced hypercube Qn,k (n ≥ 3, 1 ≤ k 〈≤n - 1). When IFvl = 2, we showed that Qn,k - Fv contains a fault-free cycle of every even length from 4 to 2n - 4 where n (n ≥ 3) and k have the same parity; and contains a fault-free cycle of every even length from 4 to 2n - 4, simultaneously, contains a cycle of every odd length from n-k + 2 to 2^n-3 where n (≥ 3) and k have the different parity. Furthermore, when |Fv| = fv ≤ n - 2, we prove that there exists the longest fault-free cycle, which is of even length 2^n - 2fv whether n (n ≥ 3) and k have the same parity or not; and there exists the longest fault-free cycle, which is of odd length 2^n - 2fv + 1 in Qn,k - Fv where n (≥ 3) and k have the different parity.展开更多
This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is meas...This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is measured by an optimal index. The notion of an adaptive H-infinity performance index is proposed to describe the disturbance attenuation performances of closed-loop systems. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updated automatically to compensate for the fault effects on systems. The designs are developed in the framework of the linear matrix inequality (LMI) approach, which can guarantee the disturbance tolerance ability and adaptive H-infinity performances of closed-loop systems in the cases of actuator saturation and actuator failures. An example is given to illustrate the efficiency of the design method.展开更多
Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are ...Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs.展开更多
A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by u...A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by using the event-triggered sampled output. Some H∞constraints between the estimation errors and the event-triggered sampling mechanism are established to ensure the estimation accuracy. Then, based on the constraints and the obtained fault information, an event-triggered detector and a static fault tolerant controller are co-designed to guarantee the stability of the faulty system and to reduce the sensor communication cost.Furthermore, the problem of the event detector and dynamic FTC co-design is also investigated. Simulation results of an unstable batch reactor are finally provided to illustrate the effectiveness of the proposed method.展开更多
Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of C...Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of Cd in agricultural crops constitutes a primary vector for its entry into the human diet. This issue warrants urgent attention from both the scientific community and policymakers to develop and implement effective mitigation strategies. This review delves into the physiological impacts of Cd stress on plants, including the suppression of photosynthetic activity, amplification of oxidative stress, and disruptions in mineral nutrient homeostasis. Additionally, the resistance mechanisms deployed by plants in response to Cd stress have been explored, and the prospective contributions of molecular breeding strategies in augmenting crop tolerance to Cd and minimizing its bioaccumulation have been assessed. By integrating and analyzing these findings, we seek to inform future research trajectories and proffer strategic approaches to enhance agricultural sustainability, safeguard human health, and protect environmental integrity.展开更多
Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.H...Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.Here,we propose a novel bioinspired strategy to construct a spontaneously formed‘skin’on the slippery hydrogels by incorporating biological stress metabolites trehalose into the hydrogel network,which can generate robust hydrogen bonding interactions to restrain water evaporation.The contents of trehalose in hydrogel matrix can also regulate the desiccation-tolerance,mechanical properties,and lubricating performance of slippery hydrogels in a wide range.Combining vat photopolymerization three-dimensional printing and trehalose-modified slippery hydrogels enables to achieve the structural hydrogels with high resolution,shape fidelity,and sophisticated architectures,instead of structural collapse and shrinkage deformation caused by dehydration.And thus,this proposed functional hydrogel adapts to manufacture large-scale hydrogels with sophisticated architectures in a long-term process.As a proof-of-concept demonstration,a high-precision and sophisticated slippery hydrogel vascular phantom was easily fabricated to imitate guidewire intervention.Additionally,the proposed protocol is universally applicable to diverse types of hydrogel systems.This strategy opens up a versatile methodology to fabricate dry-resistant slippery hydrogel for functional structures and devices,expanding their high-precision processing and broad applications in the atmosphere.展开更多
Rice(Oryza sativa L.)stands as the most significantly influential food crop in the developing world,with its total production and yield stability affected by environmental stress.Drought stress impacts about 45%of the...Rice(Oryza sativa L.)stands as the most significantly influential food crop in the developing world,with its total production and yield stability affected by environmental stress.Drought stress impacts about 45%of the world’s rice area,affecting plants at molecular,biochemical,physiological,and phenotypic levels.The conventional breeding method,predominantly employing single pedigree selection,has been widely utilized in breeding numerous drought-tolerant rice varieties since the Green Revolution.With rapid progress in plant molecular biology,hundreds of drought-tolerant QTLs/genes have been identified and tested in rice crops under both indoor and field conditions.Several genes have been introgressed into elite germplasm to develop commercially accepted drought-tolerant varieties,resulting in the development of several drought-tolerant rice varieties through marker-assisted selection and genetically engineered approaches.This review provides up-to-date information on proof-of-concept genes and breeding methods in the molecular breeding era,offering guidance for rice breeders to develop drought-tolerant rice varieties.展开更多
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS...Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.展开更多
Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no...Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.展开更多
Modular multilevel converters(MMCs)have been one of the most broadly used multilevel converter topologies in industrial applications,particularly in medium-voltage motor drives and high-voltage dc power conversion sys...Modular multilevel converters(MMCs)have been one of the most broadly used multilevel converter topologies in industrial applications,particularly in medium-voltage motor drives and high-voltage dc power conversion systems.However,due to the utilization of large amount of semiconductor devices,the reliability of MMCs becomes one of the severe challenges constraining their further development and applications.In this paper,common electrical faults of the MMC have been summarized and analyzed,including open-circuit switching faults,short-circuit switching faults,dc-bus short-circuit faults,and single line-to-ground faults on the ac side.A thorough and comprehensive review of the existing online fault diagnostic methods has been conducted.In addition,fault-tolerant operation strategies for such various fault scenarios in MMCs have been presented.All the fault diagnosis and fault-tolerant operation strategies are comparatively evaluated,which aims to provide a state-of-the-art reference on the MMC reliability for future research and industrial applications.展开更多
Switched reluctance motor power converters are prone to open-circuit faults because it need to withstand large voltages and currents.Due to the small number of traditional asymmetrical half bridge topology switches,it...Switched reluctance motor power converters are prone to open-circuit faults because it need to withstand large voltages and currents.Due to the small number of traditional asymmetrical half bridge topology switches,it is difficult to carry out fault tolerant control when power converters has an open-circuit fault,resulting in larger output torque ripple.This paper presents a five-level power converter based on the traditional asymmetric half-bridge power converter.The five-level topology has more switching states and can work in multi-level mode.Based on the topology,different excitation and demagnetization voltages can be choose at different speeds.A fault-tolerance strategy is developed to decrease the influence of the open-circuit fault.The five-level power converter has four switches per phase,and two of them will be used in one of the operating mode.So the remaining two of the switches can be used for safe backup,enabling fault-tolerant control when an open-circuit occur.Since each phase of the five-level power converter proposed in this paper is independent of each other,a reasonable control strategy can be used to avoid the unbalance of the midpoint potential.Finally,the topology and fault-tolerant strategy proposed in this paper are verified by simulation and experiment.展开更多
This paper proposes a new fault-tolerant time synchronization algorithm for wireless sensor networks that requires a short time for synchronization, achieves a guaranteed time synchronization level for all non-faulty ...This paper proposes a new fault-tolerant time synchronization algorithm for wireless sensor networks that requires a short time for synchronization, achieves a guaranteed time synchronization level for all non-faulty nodes, accommodates nodes that enter suspended mode and then wake up, is computationally efficient, operates in a completely decentralized manner and tolerates up to f (out of 2 f + 1 total) faulty nodes. The performance of the proposed algorithm is analyzed, and an equation is derived for the resynchronization interval required for a specific level of synchronization precision. Results obtained from real runs on multi-hop networks are used to demonstrate the claimed features of the proposed algorithm.展开更多
This paper presents an introductory overview on the development of fault-tolerant control systems. For this reason, the paper is written in a tutorial fashion to summarize some of the important results in this subject...This paper presents an introductory overview on the development of fault-tolerant control systems. For this reason, the paper is written in a tutorial fashion to summarize some of the important results in this subject area deliberately without going into details in any of them. However, key references are provided from which interested readers can obtain more detailed information on a particular subject. It is necessary to mention that, throughout this paper, no efforts were made to provide an exhaustive coverage on the subject matter. In fact, it is far from it. The paper merely represents the view and experience of its author. It can very well be that some important issues or topics were left out unintentionally. If that is the case, the author sincerely apologizes in advance.After a brief account of fault-tolerant control systems, particularly on the original motivations, and the concept of redundancies, the paper reviews the development of fault-tolerant control systems with highlights to several important issues from a historical perspective. The general approaches to fault-tolerant control has been divided into passive, active, and hybrid approaches. The analysis techniques for active fault-tolerant control systems are also discussed. Practical applications of faulttolerant control are highlighted from a practical and industrial perspective. Finally, some critical issues in this area are discussed as open problems for future research/development in this emerging field.展开更多
基金supported by Research and Application of Edge IoT Technology for Distributed New Energy Consumption in Distribution Areas,Project Number(5108-202218280A-2-394-XG)。
文摘For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability,which often limits TSN scheduling performance in fault-free ideal states.So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism(GRFS)for data flow in PCN,which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding(CQF)model and fault recovery method,which reduces the impact of faults by simplified scheduling configurations of CQF and fault-tolerance of prioritizing the rerouting of faulty time-sensitive(TS)flows;considering that PF leading to changes in network topology is more appropriately solved by doing routing and time slot injection decisions hop-by-hop,and that reasonable network load can reduce the damage caused by PF and reserve resources for the rerouting of faulty TS flows,an optimization model for joint routing and scheduling is constructed with scheduling success rate as the objective,and with traffic latency and network load as constraints;to catch changes in TSN topology and traffic load,a D3QN algorithm based on a multi-head graph attention residual network(MGAR)is designed to solve the problem model,where the MGAR based encoder reconstructs the TSN status into feature embedding vectors,and a dueling network decoder performs decoding tasks on the reconstructed feature embedding vectors.Simulation results show that GRFS outperforms heuristic fault-tolerance algorithms and other benchmark schemes by approximately 10%in routing and scheduling success rate in ideal states and 5%in rerouting and rescheduling success rate in fault states.
基金supported by the Innovation Fund Project of Jiangxi Normal University(YJS2022065)the Domestic Visiting Program of Jiangxi Normal University.
文摘Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery,ultimately enhancing the quality of the user experience.However,due to the typical placement of edge devices and nodes at the network’s periphery,these components may face various potential fault tolerance challenges,including network instability,device failures,and resource constraints.Considering the dynamic nature ofMEC,making high-quality content caching decisions for real-time mobile applications,especially those sensitive to latency,by effectively utilizing mobility information,continues to be a significant challenge.In response to this challenge,this paper introduces FT-MAACC,a mobility-aware caching solution grounded in multi-agent deep reinforcement learning and equipped with fault tolerance mechanisms.This approach comprehensively integrates content adaptivity algorithms to evaluate the priority of highly user-adaptive cached content.Furthermore,it relies on collaborative caching strategies based onmulti-agent deep reinforcement learningmodels and establishes a fault-tolerancemodel to ensure the system’s reliability,availability,and persistence.Empirical results unequivocally demonstrate that FTMAACC outperforms its peer methods in cache hit rates and transmission latency.
文摘In this paper, the multisensor data fusion technique of a fault tolerant integrated navigation system is discussed. A neural approach for data fusion is proposed for multisensor integrated systems. The simulation results show that this neural approach for data fusion is feasible.
基金the National Natural Science Foundation of China(11875138,52077095).
文摘High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.
基金supported by Australian Research Council,Australia grants to Sergey Shabala and Kadambot H.M.Siddique。
文摘The growing global population presents a significant challenge to ensuring food security,further compounded by the increasing threat of salinity to agricultural productivity.Wheat,a major staple food providing 20%of the total caloric intake for humans,is susceptible to salinity stress.Developing new salttolerant wheat cultivars using wheat breeding techniques and genetic modifications is crucial to addressing this issue while ensuring the sustainability and efficiency of wheat production systems within the prevailing climate trend.This review overviews the current landscape in this field and explores key mechanisms and associated genetic traits that warrant attention within breeding programs.We contend that traditional approaches to breeding wheat for Na^(+)exclusion have limited applicability across varying soil salinity levels,rendering them inefficient.Moreover,we question current phenotyping approaches,advocating for a shift from whole-plant assessments to cell-based phenotyping platforms.Finally,we propose a broader use of wild wheat relatives and various breeding strategies to tap into their germplasm pool for inclusion in wheat breeding programs.
基金supported by grants from the National Key Research and Development Programof China(2018YFA0903600)well as the National Natural Science Foundation of China(32371486 and 32270091).
文摘Photosynthetic cyanobacteria have shown great potential as“autotrophic cell factories”for the synthesis of fuels and chemicals.However,poor tolerance to various environmental stressors such as high light and heavy metals is an important factor limiting their economic viability.While numerous studies have focused on the tolerance mechanism of cyanobacteria to individual stressors,their response to simultaneous stresses remains to be recovered.To investigate the mechanism of cross tolerance to heavymetal Cd^(2+) and high light,the model cyanobacterium Synechocystis sp.PCC 6803 tolerant to both Cd^(2+) and high light was obtained via about 800 days’cross-adaptive laboratory evolution.Three evolutionary strains capable of tolerating both 5.5 μmol·L^(-1) Cd^(2+) and 600 μmol·m^(-2)·s^(-1) high light were successfully obtained,achieving about 83%enhancement of Cd^(2+) tolerance compared with the parent strain.The different response of parent and evolutionary strains to Cd^(2+) was elucidated via metabolomics.Furthermore,a total of 15 genes that were mutated during evolution were identified by whole-genome re-sequencing.Finally,by single-gene knockout and complementation analysis,four genes including ssl2615,sll1732,ssr1480,and sll1659 involved in the improvement of Cd^(2+) tolerance under high-light condition were successfully identified.This work explored the tolerance mechanism of Synechocystis sp.PCC 6803 to cadmium under high-light condition and provided valuable reference for deciphering multitolerance mechanism of cyanobacteria in the future.
基金supported by NSFC(11071096 and 11171129)Hubei Province,China(T201103)
文摘In this paper, we study the enhanced hypercube, an attractive variant of the hypercube and obtained by adding some complementary edges from a hypercube, and focus on cycles embedding on the enhanced hypercube with faulty vertices. Let Fu be the set of faulty vertices in the n-dimensional enhanced hypercube Qn,k (n ≥ 3, 1 ≤ k 〈≤n - 1). When IFvl = 2, we showed that Qn,k - Fv contains a fault-free cycle of every even length from 4 to 2n - 4 where n (n ≥ 3) and k have the same parity; and contains a fault-free cycle of every even length from 4 to 2n - 4, simultaneously, contains a cycle of every odd length from n-k + 2 to 2^n-3 where n (≥ 3) and k have the different parity. Furthermore, when |Fv| = fv ≤ n - 2, we prove that there exists the longest fault-free cycle, which is of even length 2^n - 2fv whether n (n ≥ 3) and k have the same parity or not; and there exists the longest fault-free cycle, which is of odd length 2^n - 2fv + 1 in Qn,k - Fv where n (≥ 3) and k have the different parity.
基金partly supported by Program for New Century Excellent Talents in University (No.NCET-04-0283)the Funds for Creative Research Groups of China (No.60521003)+4 种基金Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0421)the State Key Program of National Natural Science of China (No.60534010)the Funds of National Science of China (No.60674021)the Funds of PhD program of MOE,China (No.20060145019)the 111 Project (No.B08015)
文摘This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is measured by an optimal index. The notion of an adaptive H-infinity performance index is proposed to describe the disturbance attenuation performances of closed-loop systems. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updated automatically to compensate for the fault effects on systems. The designs are developed in the framework of the linear matrix inequality (LMI) approach, which can guarantee the disturbance tolerance ability and adaptive H-infinity performances of closed-loop systems in the cases of actuator saturation and actuator failures. An example is given to illustrate the efficiency of the design method.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.61521003the National Natural Science Foundation of China under Grant No.62072467 and 62002383.
文摘Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs.
基金supported by the National Natural Science Foundation of China(6147315961374136+1 种基金61104028)the Research Innovation Program of Nantong University(YKC16004)
文摘A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by using the event-triggered sampled output. Some H∞constraints between the estimation errors and the event-triggered sampling mechanism are established to ensure the estimation accuracy. Then, based on the constraints and the obtained fault information, an event-triggered detector and a static fault tolerant controller are co-designed to guarantee the stability of the faulty system and to reduce the sensor communication cost.Furthermore, the problem of the event detector and dynamic FTC co-design is also investigated. Simulation results of an unstable batch reactor are finally provided to illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (Grant Nos.32100283 and 32071932)the Xinjiang ‘Tianchi Talent’ Recruitment Program, China。
文摘Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of Cd in agricultural crops constitutes a primary vector for its entry into the human diet. This issue warrants urgent attention from both the scientific community and policymakers to develop and implement effective mitigation strategies. This review delves into the physiological impacts of Cd stress on plants, including the suppression of photosynthetic activity, amplification of oxidative stress, and disruptions in mineral nutrient homeostasis. Additionally, the resistance mechanisms deployed by plants in response to Cd stress have been explored, and the prospective contributions of molecular breeding strategies in augmenting crop tolerance to Cd and minimizing its bioaccumulation have been assessed. By integrating and analyzing these findings, we seek to inform future research trajectories and proffer strategic approaches to enhance agricultural sustainability, safeguard human health, and protect environmental integrity.
基金the financial support from the National Key Research and Development Program of China(2022YFB4600101)the National Natural Science Foundation of China(52175201,52005484,and 52205228)+6 种基金the Research Program of Science and Technology Department of Gansu Province(21YF5FA139 and 22JR5RA107)the Shandong Provincial Natural Science Foundation(ZR2023OE090)the Major Program(ZYFZFX-2)the Cooperation Foundation for Young Scholars(HZJJ23-02)of the Lanzhou Institute of Chemical Physics,CASthe Western Light Project,CAS(xbzg-zdsys-202007)the Taishan Scholars Programthe Oasis Scholar of Shihezi University。
文摘Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.Here,we propose a novel bioinspired strategy to construct a spontaneously formed‘skin’on the slippery hydrogels by incorporating biological stress metabolites trehalose into the hydrogel network,which can generate robust hydrogen bonding interactions to restrain water evaporation.The contents of trehalose in hydrogel matrix can also regulate the desiccation-tolerance,mechanical properties,and lubricating performance of slippery hydrogels in a wide range.Combining vat photopolymerization three-dimensional printing and trehalose-modified slippery hydrogels enables to achieve the structural hydrogels with high resolution,shape fidelity,and sophisticated architectures,instead of structural collapse and shrinkage deformation caused by dehydration.And thus,this proposed functional hydrogel adapts to manufacture large-scale hydrogels with sophisticated architectures in a long-term process.As a proof-of-concept demonstration,a high-precision and sophisticated slippery hydrogel vascular phantom was easily fabricated to imitate guidewire intervention.Additionally,the proposed protocol is universally applicable to diverse types of hydrogel systems.This strategy opens up a versatile methodology to fabricate dry-resistant slippery hydrogel for functional structures and devices,expanding their high-precision processing and broad applications in the atmosphere.
基金the National Natural Science Foundation of China(Grant No.31900361).
文摘Rice(Oryza sativa L.)stands as the most significantly influential food crop in the developing world,with its total production and yield stability affected by environmental stress.Drought stress impacts about 45%of the world’s rice area,affecting plants at molecular,biochemical,physiological,and phenotypic levels.The conventional breeding method,predominantly employing single pedigree selection,has been widely utilized in breeding numerous drought-tolerant rice varieties since the Green Revolution.With rapid progress in plant molecular biology,hundreds of drought-tolerant QTLs/genes have been identified and tested in rice crops under both indoor and field conditions.Several genes have been introgressed into elite germplasm to develop commercially accepted drought-tolerant varieties,resulting in the development of several drought-tolerant rice varieties through marker-assisted selection and genetically engineered approaches.This review provides up-to-date information on proof-of-concept genes and breeding methods in the molecular breeding era,offering guidance for rice breeders to develop drought-tolerant rice varieties.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)。
文摘Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.
基金Supported by National Natural Science Foundation of China (Grant No.51975294)Fundamental Research Funds for the Central Universities of China (Grant No.30922010706)。
文摘Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.
文摘Modular multilevel converters(MMCs)have been one of the most broadly used multilevel converter topologies in industrial applications,particularly in medium-voltage motor drives and high-voltage dc power conversion systems.However,due to the utilization of large amount of semiconductor devices,the reliability of MMCs becomes one of the severe challenges constraining their further development and applications.In this paper,common electrical faults of the MMC have been summarized and analyzed,including open-circuit switching faults,short-circuit switching faults,dc-bus short-circuit faults,and single line-to-ground faults on the ac side.A thorough and comprehensive review of the existing online fault diagnostic methods has been conducted.In addition,fault-tolerant operation strategies for such various fault scenarios in MMCs have been presented.All the fault diagnosis and fault-tolerant operation strategies are comparatively evaluated,which aims to provide a state-of-the-art reference on the MMC reliability for future research and industrial applications.
文摘Switched reluctance motor power converters are prone to open-circuit faults because it need to withstand large voltages and currents.Due to the small number of traditional asymmetrical half bridge topology switches,it is difficult to carry out fault tolerant control when power converters has an open-circuit fault,resulting in larger output torque ripple.This paper presents a five-level power converter based on the traditional asymmetric half-bridge power converter.The five-level topology has more switching states and can work in multi-level mode.Based on the topology,different excitation and demagnetization voltages can be choose at different speeds.A fault-tolerance strategy is developed to decrease the influence of the open-circuit fault.The five-level power converter has four switches per phase,and two of them will be used in one of the operating mode.So the remaining two of the switches can be used for safe backup,enabling fault-tolerant control when an open-circuit occur.Since each phase of the five-level power converter proposed in this paper is independent of each other,a reasonable control strategy can be used to avoid the unbalance of the midpoint potential.Finally,the topology and fault-tolerant strategy proposed in this paper are verified by simulation and experiment.
文摘This paper proposes a new fault-tolerant time synchronization algorithm for wireless sensor networks that requires a short time for synchronization, achieves a guaranteed time synchronization level for all non-faulty nodes, accommodates nodes that enter suspended mode and then wake up, is computationally efficient, operates in a completely decentralized manner and tolerates up to f (out of 2 f + 1 total) faulty nodes. The performance of the proposed algorithm is analyzed, and an equation is derived for the resynchronization interval required for a specific level of synchronization precision. Results obtained from real runs on multi-hop networks are used to demonstrate the claimed features of the proposed algorithm.
基金Supported by Natural Sciences and Engineering Research Council of Canada (NSERC)
文摘This paper presents an introductory overview on the development of fault-tolerant control systems. For this reason, the paper is written in a tutorial fashion to summarize some of the important results in this subject area deliberately without going into details in any of them. However, key references are provided from which interested readers can obtain more detailed information on a particular subject. It is necessary to mention that, throughout this paper, no efforts were made to provide an exhaustive coverage on the subject matter. In fact, it is far from it. The paper merely represents the view and experience of its author. It can very well be that some important issues or topics were left out unintentionally. If that is the case, the author sincerely apologizes in advance.After a brief account of fault-tolerant control systems, particularly on the original motivations, and the concept of redundancies, the paper reviews the development of fault-tolerant control systems with highlights to several important issues from a historical perspective. The general approaches to fault-tolerant control has been divided into passive, active, and hybrid approaches. The analysis techniques for active fault-tolerant control systems are also discussed. Practical applications of faulttolerant control are highlighted from a practical and industrial perspective. Finally, some critical issues in this area are discussed as open problems for future research/development in this emerging field.