期刊文献+
共找到2,516篇文章
< 1 2 126 >
每页显示 20 50 100
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system
1
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 Fault diagnosis Deep learning Multi-scale convolution Open-circuit Convolutional neural network
下载PDF
A novel mitigation measure for normal fault-induced deformations on pile-raft systems
2
作者 Mohammadreza Jahanshahi Nowkandeh Mehdi Ashtiani 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期15-33,共19页
Evidence from recent earthquakes has shown destructive consequences of fault-induced permanent ground movement on structures.Such observations have increased the demand for improvements in the design of structures tha... Evidence from recent earthquakes has shown destructive consequences of fault-induced permanent ground movement on structures.Such observations have increased the demand for improvements in the design of structures that are dramatically vulnerable to surface fault ruptures.In this study a novel connection between the raft and the piles is proposed to mitigate the hazards associated with a normal fault on pile-raft systems by means of 3D finite element(FE)modeling.Before embarking on the parametric study,the strain-softening constitutive law used for numerical modeling of the sand has been validated against centrifuge test results.The exact location of the fix-head and unconnected pile-raft systems relative to the outcropping fault rupture in the free-field is parametrically investigated,revealing different failure mechanisms.The performance of the proposed connection for protecting the pile-raft system against normal fault-induced deformations is assessed by comparing the geotechnical and structural responses of both types of foundation.The results indicate that the pocket connection can relatively reduce the cap rotation and horizontal and vertical displacements of the raft in most scenarios.The proposed connection decreases the bending moment response of the piles to their bending moment capacity,verging on a fault offset of 0.6 m at bedrock. 展开更多
关键词 normal fault rupture failure mechanism pile-raft system pocket connection finite element modeling
下载PDF
Fault Estimation for a Class of Markov Jump Piecewise-Affine Systems: Current Feedback Based Iterative Learning Approach
3
作者 Yanzheng Zhu Nuo Xu +2 位作者 Fen Wu Xinkai Chen Donghua Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期418-429,共12页
In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a n... In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback. 展开更多
关键词 Current feedback fault estimation iterative learning observer Markov jump piecewise-affine system
下载PDF
Control Strategies for Digital Twin Systems
4
作者 Guo-Ping Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期170-180,共11页
With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies ... With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies various control strategies for digital twin systems from the viewpoint of practical applications.To make full use of advantages of digital twins for control systems, an architecture of digital twin control systems, adaptive model tracking scheme, performance prediction scheme, performance retention scheme, and fault tolerant control scheme are proposed. Those schemes are detailed to deal with different issues on model tracking, performance prediction, performance retention, and fault tolerant control of digital twin systems. Also, the stability of digital twin control systems is analysed. The proposed schemes for digital twin control systems are illustrated by examples. 展开更多
关键词 Digital twin control systems fault tolerant control model tracking performance prediction performance retention
下载PDF
System Reliability Analysis Method Based on T-S FTA and HE-BN
5
作者 Qing Xia Yonghua Li +1 位作者 Dongxu Zhang YufengWang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1769-1794,共26页
For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertaint... For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies. 展开更多
关键词 system reliability D-S evidence theory hyper-ellipsoidal bayesian network T-S fault tree
下载PDF
Deep-large faults controlling on the distribution of the venting gas hydrate system in the middle of the Qiongdongnan Basin, South China Sea
6
作者 Jin-feng Ren Hai-jun Qiu +6 位作者 Zeng-gui Kuang Ting-wei Li Yu-lin He Meng-jie Xu Xiao-xue Wang Hong-fei Lai Jin Liang 《China Geology》 CAS CSCD 2024年第1期36-50,共15页
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra... Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates. 展开更多
关键词 Venting gas hydrates Deep-large faults Gas chimney Gas-escape pipes High-resolution 3D seismic Logging while drilling Qiongdongnan Basin South China Sea
下载PDF
Simulation and Analysis of Cascading Faults in Integrated Heat and Electricity Systems Considering Degradation Characteristics
7
作者 Hang Cui Hongbo Ren +3 位作者 Qiong Wu Hang Lv Qifen Li Weisheng Zhou 《Energy Engineering》 EI 2024年第3期581-601,共21页
Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading fau... Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method. 展开更多
关键词 Cascading fault degradation characteristics integrated heat and electricity system multi-energy flow
下载PDF
Practical prescribed-time fuzzy tracking control for uncertain nonlinear systems with time-varying actuators faults
8
作者 Shuxing Xuan Hongjing Liang Tingwen Huang 《Journal of Automation and Intelligence》 2024年第1期40-49,共10页
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa... The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy. 展开更多
关键词 Prescribed-time tracking control Adaptive fuzzy control Actuator faults Uncertain nonlinear system
下载PDF
Decadal Forecasts of Large Earthquakes along the Northern San Andreas Fault System, California: Increased Activity on Regional Creeping Faults Prior to Major and Great Events
9
作者 Lynn R. Sykes 《International Journal of Geosciences》 CAS 2024年第2期204-230,共27页
The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise loc... The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise locations of earthquakes since 1968, geodetic data and fault offsets for the 1906 great shock are used to re-examine the timing and locations of possible future large earthquakes. The physical mechanisms of regional faults like the Calaveras, Hayward and Sargent, which exhibit creep, differ from those of the northern San Andreas, which is currently locked and is not creeping. Much decadal forerunning activity occurred on creeping faults. Moderate-size earthquakes along those faults became more frequent as stresses in the region increased in the latter part of the cycle of stress restoration for major and great earthquakes along the San Andreas. They may be useful for decadal forecasts. Yearly to decadal forecasts, however, are based on only a few major to great events. Activity along closer faults like that in the two years prior to the 1989 Loma Prieta shock needs to be examined for possible yearly forerunning changes to large plate boundary earthquakes. Geodetic observations are needed to focus on identifying creeping faults close to the San Andreas. The distribution of moderate-size earthquakes increased significantly since 1990 along the Hayward fault but not adjacent to the San Andreas fault to the south of San Francisco compared to what took place in the decades prior to the three major historic earthquakes in the region. It is now clear from a re-examination of the 1989 mainshock that the increased level of moderate-size shocks in the one to two preceding decades occurred on nearby East Bay faults. Double-difference locations of small earthquakes provide structural information about faults in the region, especially their depths. The northern San Andreas fault is divided into several strongly coupled segments based on differences in seismicity. 展开更多
关键词 San Andreas and Hayward Faults California Fault Creep Forecasts Double-Difference Relocations
下载PDF
Distributed fault diagnosis observer for multi-agent system against actuator and sensor faults 被引量:1
10
作者 YE Zhengyu JIANG Bin +2 位作者 CHENG Yuehua YU Ziquan YANG Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期766-774,共9页
Component failures can cause multi-agent system(MAS)performance degradation and even disasters,which provokes the demand of the fault diagnosis method.A distributed sliding mode observer-based fault diagnosis method f... Component failures can cause multi-agent system(MAS)performance degradation and even disasters,which provokes the demand of the fault diagnosis method.A distributed sliding mode observer-based fault diagnosis method for MAS is developed in presence of actuator and sensor faults.Firstly,the actuator and sensor faults are extended to the system state,and the system is transformed into a descriptor system form.Then,a sliding mode-based distributed unknown input observer is proposed to estimate the extended state.Furthermore,adaptive laws are introduced to adjust the observer parameters.Finally,the effectiveness of the proposed method is demonstrated with numerical simulations. 展开更多
关键词 multi-agent system(MAS) sensor fault actuator fault unknown input observer sliding mode fault diagnosis
下载PDF
Embedded System Development for Detection of Railway Track Surface Deformation Using Contour Feature Algorithm 被引量:1
11
作者 Tarique Rafique Memon Tayab Din Memon +1 位作者 Imtiaz Hussain Kalwar Bhawani Shankar Chowdhry 《Computers, Materials & Continua》 SCIE EI 2023年第5期2461-2477,共17页
Derailment of trains is not unusual all around the world,especially in developing countries,due to unidentified track or rolling stock faults that cause massive casualties each year.For this purpose,a proper condition... Derailment of trains is not unusual all around the world,especially in developing countries,due to unidentified track or rolling stock faults that cause massive casualties each year.For this purpose,a proper condition monitoring system is essential to avoid accidents and heavy losses.Generally,the detection and classification of railway track surface faults in real-time requires massive computational processing and memory resources and is prone to a noisy environment.Therefore,in this paper,we present the development of a novel embedded system prototype for condition monitoring of railway track.The proposed prototype system works in real-time by acquiring railway track surface images and performing two tasks a)detect deformation(i.e.,faults)like squats,shelling,and spalling using the contour feature algorithm and b)the vibration signature on that faulty spot by synchronizing acceleration and image data.A new illumination scheme is also proposed to avoid the sunlight reflection that badly affects the image acquisition process.The contour detection algorithm is applied here to detect the uneven shapes and discontinuities in the geometrical structure of the railway track surface,which ultimately detects unhealthy regions.It works by converting Red,Green,and Blue(RGB)images into binary images,which distinguishes the unhealthy regions by making them white color while the healthy regions in black color.We have used the multiprocessing technique to overcome the massive processing and memory issues.This embedded system is developed on Raspberry Pi by interfacing a vision camera,an accelerometer,a proximity sensor,and a Global Positioning System(GPS)sensors(i.e.,multi-sensors).The developed embedded system prototype is tested in real-time onsite by installing it on a Railway Inspection Trolley(RIT),which runs at an average speed of 15 km/h.The functional verification of the proposed system is done successfully by detecting and recording the various railway track surface faults.An unhealthy frame’s onsite detection processing time was recorded at approximately 25.6ms.The proposed system can synchronize the acceleration data on specific railway track deformation.The proposed novel embedded system may be beneficial for detecting faults to overcome the conventional manual railway track condition monitoring,which is still being practiced in various developing or underdeveloped countries. 展开更多
关键词 Railway track surface faults condition monitoring system fault detection contour detection deep learning image processing rail wheel impact
下载PDF
Construction of fault diagnosis system for control rod drive mechanism based on knowledge graph and Bayesian inference 被引量:1
12
作者 Xue‑Jun Jiang Wen Zhou Jie Hou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期58-75,共18页
Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research objec... Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research object,and a fault diagnosis system was proposed based on knowledge graph.The subject–relation–object triples are defined based on CRDM unstructured data,including design specification,operation and maintenance manual,alarm list,and other forms of expert experience.In this study,we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events.A three-layer robustly optimized bidirectional encoder representation from transformers(RBT3)pre-training approach combined with a text convolutional neural network(TextCNN)was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query.The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously.Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction.Additionally,a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically.Furthermore,the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system.Finally,a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed,making the CRDM fault diagnosis process intuitive and effective. 展开更多
关键词 CRDM Knowledge graph Fault diagnosis Bayesian inference RBT3-TextCNN Web interface
下载PDF
Integrated Generative Adversarial Network and XGBoost for Anomaly Processing of Massive Data Flow in Dispatch Automation Systems
13
作者 Wenlu Ji Yingqi Liao Liudong Zhang 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2825-2848,共24页
Existing power anomaly detection is mainly based on a pattern matching algorithm.However,this method requires a lot of manual work,is time-consuming,and cannot detect unknown anomalies.Moreover,a large amount of label... Existing power anomaly detection is mainly based on a pattern matching algorithm.However,this method requires a lot of manual work,is time-consuming,and cannot detect unknown anomalies.Moreover,a large amount of labeled anomaly data is required in machine learning-based anomaly detection.Therefore,this paper proposes the application of a generative adversarial network(GAN)to massive data stream anomaly identification,diagnosis,and prediction in power dispatching automation systems.Firstly,to address the problem of the small amount of anomaly data,a GAN is used to obtain reliable labeled datasets for fault diagnosis model training based on a few labeled data points.Then,a two-step detection process is designed for the characteristics of grid anomalies,where the generated samples are first input to the XGBoost recognition system to identify the large class of anomalies in the first step.Thereafter,the data processed in the first step are input to the joint model of Convolutional Neural Networks(CNN)and Long short-term memory(LSTM)for fine-grained analysis to detect the small class of anomalies in the second step.Extensive experiments show that our work can reduce a lot of manual work and outperform the state-of-art anomalies classification algorithms for power dispatching data network. 展开更多
关键词 Anomaly identification GAN XGBoost CNN+LSTM fault diagnosis fault prediction
下载PDF
Data-Driven Approach for Condition Monitoring and Improving Power Output of Photovoltaic Systems
14
作者 Nebras M.Sobahi Ahteshamul Haque +2 位作者 V S Bharath Kurukuru Md.Mottahir Alam Asif Irshad Khan 《Computers, Materials & Continua》 SCIE EI 2023年第3期5757-5776,共20页
Increasing renewable energy targets globally has raised the requirement for the efficient and profitable operation of solar photovoltaic(PV)systems.In light of this requirement,this paper provides a path for evaluatin... Increasing renewable energy targets globally has raised the requirement for the efficient and profitable operation of solar photovoltaic(PV)systems.In light of this requirement,this paper provides a path for evaluating the operating condition and improving the power output of the PV system in a grid integrated environment.To achieve this,different types of faults in grid-connected PV systems(GCPVs)and their impact on the energy loss associated with the electrical network are analyzed.A data-driven approach using neural networks(NNs)is proposed to achieve root cause analysis and localize the fault to the component level in the system.The localized fault condition is combined with a parallel operation of adaptive neurofuzzy inference units(ANFIUs)to develop a power mismatch-based control unit(PMCU)for improving the power output of the GCPV.To develop the proposed framework,a 10-kW single-phase GCPV is simulated for training the NN-based anomaly detection approach with 14 deviation signals.Further,the developed algorithm is combined with the PMCU implemented with the experimental setup of GCPV.The results identified 98.2%training accuracy and 43000 observations/sec prediction speed for the trained classifier,and improved power output with reduced voltage and current harmonics for the grid-connected PV operation. 展开更多
关键词 Condition monitoring anomaly detection performance evaluation fault classification OPTIMIZATION
下载PDF
Fault-tolerant FADS system development for a hypersonic vehicle via neural network algorithms
15
作者 Qian Wan Minjie Zhang +1 位作者 Guang Zuo Tianbo Xie 《Theoretical & Applied Mechanics Letters》 CSCD 2023年第5期357-366,共10页
Hypersonic vehicles suffer from extreme aerodynamic heating during flights, especially around the area of leading edge due to its small curvature. Therefore, flush air data sensing(FADS) system has been developed to p... Hypersonic vehicles suffer from extreme aerodynamic heating during flights, especially around the area of leading edge due to its small curvature. Therefore, flush air data sensing(FADS) system has been developed to perform accurate measurement of the air data parameters. In the present study, the method to develop the FADS algorithms with fail-operational capability for a sharp-nosed hypersonic vehicle is provided. To be specific, the FADS system implemented with 16 airframe-integrated pressure ports is used as a case study. Numerical simulations of different freestream conditions have been conducted to generate the database for the FADS targeting in 2 ≤ Ma ≤ 5 and 0 km ≤ H ≤ 30 km. Four groups of neural network algorithms have been developed based on four different pressure port configurations, and the accuracy has been validated by 280 groups of simulations. Particularly, the algorithms based on the 16-port configuration show an excellent ability to serve as the main solver of the FADS, where 99. 5% of the angle-of-attack estimations are within the error band ±0. 2°. The accuracy of the algorithms is discussed in terms of port configuration. Furthermore, diagnosis of the system health is present in the paper. A fault-tolerant FADS system architecture has been designed, which is capable of continuously sensing the air data in the case that multi-port failure occurs, with a reduction in the system accuracy. 展开更多
关键词 FADS system Hypersonic vehicle Neural network Numerical simulation Fault detection Redundancy management
下载PDF
Fault Diagnosis and Separation for a Distributed Rotary-laser Scanning System
16
作者 Siyang GUO Yin GUO +2 位作者 Shibin YIN Hongbo XIE Jigui ZHU 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第4期70-78,共9页
The wMPS is a laser-based measurement system used for large scale metrology.However,it is susceptible to external factors such as vibrations,which can lead to unreliable measurements.This paper presents a fault diagno... The wMPS is a laser-based measurement system used for large scale metrology.However,it is susceptible to external factors such as vibrations,which can lead to unreliable measurements.This paper presents a fault diagnosis and separation method which can counter this problem.To begin with,the paper uses simple models to explain the fault diagnosis and separation methods.These methods are then mathematically derived using statistical analysis and the principles of the wMPS.A comprehensive solution for fault diagnosis and separation is proposed,considering the characteristics of the wMPS.The effectiveness of this solution is verified through experimental observations.It can be concluded that this approach can detect and separate false observations,thereby enhancing the reliability of the wMPS. 展开更多
关键词 rotary-laser scanning measurement system least square method fault diagnosis fault separation
下载PDF
Robust fault detection for delta operator switched fuzzy systems with bilateral packet losses
17
作者 FAN Yamin ZHANG Duanjin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期214-223,共10页
Considering packet losses, time-varying delay, and parameter uncertainty in the switched fuzzy system, this paper designs a robust fault detection filter at any switching rate and analyzes the H∞ performance of the s... Considering packet losses, time-varying delay, and parameter uncertainty in the switched fuzzy system, this paper designs a robust fault detection filter at any switching rate and analyzes the H∞ performance of the system. Firstly, the Takagi-Sugeno(T-S) fuzzy model is used to establish a global fuzzy model for the uncertain nonlinear time-delay switched system,and the packet loss process is modeled as a mathematical model satisfying Bernoulli distribution. Secondly, through the average dwell time method and multiple Lyapunov functions, the exponentially stable condition of the nonlinear network switched system is given. Finally, specific parameters of the robust fault detection filter can be obtained by solving linear matrix inequalities(LMIs). The effectiveness of the method is verified by simulation results. 展开更多
关键词 switched fuzzy system robust fault detection timevarying delay bilateral packet losses UNCERTAINTY average dwell time method
下载PDF
A Broker-Based Task-Scheduling Mechanism Using Replication Approach for Cloud Systems
18
作者 Abdulelah Alwabel 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2217-2232,共16页
The reliability and availability of cloud systems have become major concerns of service providers,brokers,and end-users.Therefore,studying fault-tolerance mechanisms in cloud computing attracts intense attention in in... The reliability and availability of cloud systems have become major concerns of service providers,brokers,and end-users.Therefore,studying fault-tolerance mechanisms in cloud computing attracts intense attention in industry and academia.The task-scheduling mechanisms can improve the fault-tolerance level of cloud systems.A task-scheduling mechanism distributes tasks to a group of instances to be executed.Much work has been undertaken in this direction to improve the overall outcome of cloud computing,such as improving service qual-ity and reducing power consumption.However,little work on task scheduling has studied the problem of lost tasks from the broker’s perspective.Task loss can hap-pen due to virtual machine failures,server crashes,connection interruption,etc.The broker-based concept means that the backup task can be allocated by the bro-ker on the same cloud service provider(CSP)or a different CSP to reduce costs,for example.This paper proposes a novel fault-tolerant mechanism that employs the primary backup(PB)model of task scheduling to address this issue.The pro-posed mechanism minimizes the impact of failure events by reducing the number of lost tasks.The mechanism is further improved to shorten the makespan time of submitted tasks in cloud systems.The experiments demonstrated that the pro-posed mechanism decreased the number of lost tasks by about 13%–15%com-pared with other mechanisms in the literature. 展开更多
关键词 Cloud computing task scheduling fault tolerance REPLICATION broker-based
下载PDF
Weak Fault Detection of Rotor Winding Inter-Turn Short Circuit in Excitation System Based on Residual Interval Observer
19
作者 Gang Liu Xinqi Chen +4 位作者 Lijuan Bao Linbo Xu Chaochao Dai Lei Yang Chengmin Wang 《Structural Durability & Health Monitoring》 EI 2023年第4期337-351,共15页
Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is desi... Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is designed.Firstly,the mechanism of the inter-turn short circuit of the rotor winding in the excitation system is modeled under the premise of stable working conditions,and electromagnetic decoupling and system simplification are carried out through Park Transform.An interval observer is designed based on the current residual in the two-phase coordinate system,and the sensitive and stable conditions of the observer is preset.The fault diagnosis process based on the interval observer is formulated,and the observer gain matrix is convexly optimized by linear matrix inequality.The numerical simulation and experimental results show that the inter-turn short circuit weak fault is hardly detected directly through the current signal,but the fault is quickly and accurately diagnosed through the residual internal observer.Compared with the traditional fault diagnosis method based on excitation current,the diagnosis speed and accuracy are greatly improved,and the probability of misdiagnosis also decreases.This method provides a theoretical basis for weak fault identification of excitation systems,and is of great significance for the operation and maintenance of excitation systems. 展开更多
关键词 Excitation system interval observer rotor winding weak fault detection inter-turn shortcut
下载PDF
Research on Asymmetric Fault Location of Wind Farm Collection System Based on Compressed Sensing
20
作者 Huanan Yu Gang Han +1 位作者 Hansong Luo He Wang 《Energy Engineering》 EI 2023年第9期2029-2057,共29页
Aiming at the problem that most of the cables in the power collection systemof offshore wind farms are buried deep in the seabed,whichmakes it difficult to detect faults,this paper proposes a two-step fault location m... Aiming at the problem that most of the cables in the power collection systemof offshore wind farms are buried deep in the seabed,whichmakes it difficult to detect faults,this paper proposes a two-step fault location method based on compressed sensing and ranging equation.The first step is to determine the fault zone through compressed sensing,and improve the datameasurement,dictionary design and algorithmreconstruction:Firstly,the phase-locked loop trigonometric functionmethod is used to suppress the spike phenomenon when extracting the fault voltage,so that the extracted voltage valuewillnot have a large error due to the voltage fluctuation.Secondly,theλ-NIM dictionary is designed by using the node impedancematrix and the fault location coefficient to further reduce the influence of pseudo-fault points.Finally,the CoSaMP algorithmis improved with the generalized Jaccard coefficient to improve the reconstruction accuracy.The second step is to use the ranging equation to accurately locate the asymmetric fault of the wind farm collection system on the basis of determining the fault interval.The simulation results show that the proposedmethod ismore accurate than the compressedsensingmethod andimpedancemethod in fault section location and fault location accuracy,the relative error is reduced from 0.75%to 0.4%,and has a certain anti-noise ability. 展开更多
关键词 Offshore wind farm convergence system compression sensing ranging equation fault location
下载PDF
上一页 1 2 126 下一页 到第
使用帮助 返回顶部