期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Analysis of the world deepwater oil and gas exploration situation
1
作者 WEN Zhixin WANG Jianjun +5 位作者 WANG Zhaoming HE Zhengjun SONG Chengpeng LIU Xiaobing ZHANG Ningning JI Tianyu 《Petroleum Exploration and Development》 SCIE 2023年第5期1060-1076,共17页
The global trends in deepwater oil and gas exploration,characteristics of deepwater oil and gas discovery,and layout of deepwater oil and gas exploration business by seven major international oil companies are systema... The global trends in deepwater oil and gas exploration,characteristics of deepwater oil and gas discovery,and layout of deepwater oil and gas exploration business by seven major international oil companies are systematically analyzed using commercial databases(e.g.S&P Global and Rystad)and public information of oil companies.The deepwater area is currently the most important domain for global oil and gas exploration and discovery,with the most discoveries and reserves in passive continental margin basins.The deepwater discoveries have the greatest contribution to the total newly discovered oil and gas reserves in the sea areas,with an increasing number of lithological reservoirs discovered,and oil and gas discoveries mainly distributed in the Mesozoic–Cenozoic.The seven major international oil companies are widely active in various aspects of deepwater oil and gas exploration and development,and play a leading role.Based on years of theoretical understanding of global oil and gas geology and resource evaluation,it is proposed that favorable deepwater exploration areas in the future will mainly focus on three major areas:the Atlantic coast,the Indian Ocean periphery,and the Arctic Ocean periphery.Six suggestions are put forward for expanding overseas deepwater oil and gas exploration business:first,expand the sources for obtaining multi-user seismic data and improve the scientific selection of deepwater exploration areas;second,increase efforts to obtain deepwater exploration projects in key areas;third,adopt various methods to access into/exit from resource licenses flexibly;fourth,acquire licenses with large equity and operate in“dual-exploration”model;fifth,strengthen cooperation with leading international oil companies in deepwater technology;and sixth,improve business operation capabilities and gradually transform from“non-operators”to“operators”. 展开更多
关键词 world petroliferous basins DEEPWATER oil and gas exploration situation international oil companies favorable exploration areas
下载PDF
Major Fields and Areas to Draw PetroChina's Oil and Gas Exploration Efforts
2
《China Oil & Gas》 CAS 2001年第4期30-31,共2页
关键词 ROCK Major Fields and areas to Draw PetroChina’s oil and gas exploration Efforts
下载PDF
Growth behavior and resource potential evaluation of gas hydrate in core fractures in Qilian Mountain permafrost area, Qinghai-Tibet Plateau 被引量:1
3
作者 Qing-guo Meng Chang-ling Liu +5 位作者 Zhen-quan Lu Xi-luo Hao Cheng-feng Li Qing-tao Bu Yun-kai Ji Jia-xian Wang 《China Geology》 CAS CSCD 2023年第2期208-215,共8页
The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.U... The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area. 展开更多
关键词 gas hydrate Growth behavior Core fracture Rock Quality Designation Resource potential evaluation Engineering oil and gas exploration Qilian Mountain permafrost area Qinghai-Tibet Plateau
下载PDF
Analysis of the world oil and gas exploration situation in 2021 被引量:2
4
作者 DOU Lirong WEN Zhixin +4 位作者 WANG Jianjun WANG Zhaoming HE Zhengjun LIU Xiaobing ZHANG Ningning 《Petroleum Exploration and Development》 CSCD 2022年第5期1195-1209,共15页
The global exploration investment, new oil and gas discoveries, exploration business adjustment strategies of oil companies in 2021, and future favorable exploration domains are systematically analyzed using commercia... The global exploration investment, new oil and gas discoveries, exploration business adjustment strategies of oil companies in 2021, and future favorable exploration domains are systematically analyzed using commercial databases such as IHS and public information of oil companies. It has been found that the world oil and gas exploration situation in 2021 has continued the downturn since the outbreak of COVID-19. The investment and drilling workload decreased slightly, but the success rate of exploration wells, especially deepwater exploration wells, increased significantly, and the newly discovered reserves increased slightly compared with last year. Deep waters of the passive continental margin basins are still the leading sites for discovering conventional large and medium-sized oil and gas fields. The conventional oil and gas exploration in deep formations of onshore petroliferous basins has been keeping a good state, with tight/shale oil and gas discoveries made in Saudi Arabia, Russia, and other countries. While strengthening the exploration and development of local resources, national, international, and independent oil companies have been focusing on major overseas frontiers using their advantages, including risk exploration in deep waters and natural gas. Future favorable exploration directions in the three major frontiers, the global deep waters, deep onshore formations, and unconventional resources, have been clarified. Four suggestions are put forward for the global exploration business of Chinese oil companies: first, a farm in global deepwater frontier basins in advance through bidding at a low cost and adopt the “dual exploration model” after making large-scale discoveries;second, enter new blocks of emerging hot basins in the world through farm-in and other ways, to find large oil and gas fields quickly;third, cooperate with national oil companies of the resource host countries in the form of joint research and actively participate exploration of deep onshore formations of petroliferous basins;fourth, track tight/shale oil and gas cooperation opportunities in a few countries such as Saudi Arabia and Russia, and take advantage of mature domestic theories and technologies to farm in at an appropriate time. 展开更多
关键词 exploration investment exploration situation new discoveries favorable exploration areas overseas oil and gas exploration deep water deep formation unconventional resources
下载PDF
Study on the Environmental Impact of Oil and Gas Field Development on the Ecological Red Line Area 被引量:1
5
作者 Yunshi XIONG Zhihong GUO +1 位作者 Tao LIANG Qichen GAO 《Meteorological and Environmental Research》 CAS 2020年第3期70-73,80,共5页
To cooperate with the five ministries and commissions of the state to carry out joint investigation on the environmentally sensitive areas involved in oil and gas exploration and development,for the problems found in ... To cooperate with the five ministries and commissions of the state to carry out joint investigation on the environmentally sensitive areas involved in oil and gas exploration and development,for the problems found in survey,containing complex type and numerous amount of ecologically sensitive space and ecological red line involved in oil and gas field enterprises,scientific nature of delimitation,lack of strong support of laws and regulations for forced withdrawal of oil and gas production facilities in these areas,some countermeasures and suggestions were proposed,such as further evaluating and combing scope and functional zoning of existing environmentally sensitive areas and ecological red lines,treating differently,enhancing pertinence of prohibition in ecologically sensitive regions,declining blindness of the withdrawal of oil and gas facilities in environmentally sensitive areas,strengthening seriousness of approval of exploration and mining rights of oil and gas resources,and establishing strategic reserve exploration and hierarchical development mechanism. Moreover,oil and gas field enterprises should integrate more efforts to ① accelerate to find out the current situation of environmental quality,② adhere to developing in protection,and protecting in development,③ increase attention and participation strengthen of providing technical support for national oil and gas exploration and development strategy evaluation,④ accelerate communication and docking with local governments on the ecological red line,⑤ actively strive to be included in the positive list management of local governments,⑥ accelerate to establish and perfect primary database of oil and gas production and facilities construction,and ⑦ document management information system of the ecological red line. 展开更多
关键词 oil and gas fields exploration and development Ecological red line Environmentally sensitive area Environmental effect
下载PDF
Coexistence of natural gas hydrate,free gas and water in the gas hydrate system in the Shenhu Area,South China Sea 被引量:27
6
作者 Xu-wen Qin Jing-an Lu +6 位作者 Hai-long Lu Hai-jun Qiu Jin-qiang Liang Dong-ju Kang Lin-sen Zhan Hong-feng Lu Zeng-gui Kuang 《China Geology》 2020年第2期210-220,共11页
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide cover... Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide coverage of the three-dimensional seismic survey,a large number of boreholes,and detailed data of the seismic survey,logging,and core analysis.In the beginning of 2020,China has successfully conducted the second offshore production test of gas hydrates in this area.In this paper,studies were made on the structure of the hydrate system for the production test,based on detailed logging data and core analysis of this area.As to the results of nuclear magnetic resonance(NMR)logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition,the hydrate system on which the production well located can be divided into three layers:(1)207.8–253.4 mbsf,45.6 m thick,gas hydrate layer,with gas hydrate saturation of 0–54.5%(31%av.);(2)253.4–278 mbsf,24.6 m thick,mixing layer consisting of gas hydrates,free gas,and water,with gas hydrate saturation of 0–22%(10%av.)and free gas saturation of 0–32%(13%av.);(3)278–297 mbsf,19 m thick,with free gas saturation of less than 7%.Moreover,the pore water freshening identified in the sediment cores,taken from the depth below the theoretically calculated base of methane hydrate stability zone,indicates the occurrence of gas hydrate.All these data reveal that gas hydrates,free gas,and water coexist in the mixing layer from different aspects. 展开更多
关键词 Mixing layer gas hydrate NMR logging Sonic logging Core analysis oil gas exploration engineering Shenhu area South China Sea China
下载PDF
Geological characteristics and co-exploration and co-production methods of Upper Permian Longtan coal measure gas in Yangmeishu Syncline, Western Guizhou Province, China 被引量:8
7
作者 Cai-qin Bi Jia-qiang Zhang +6 位作者 Yan-sheng Shan Zhi-fang Hu Fu-guo Wang Huan-peng Chi Yue Tang Yuan Yuan Ya-ran Liu 《China Geology》 2020年第1期38-51,共14页
Coal measure gas(also known as coal-bearing unconventional gas)is the key field and development direction of unconventional natural gas in recent years.The exploration and evaluation of coal measure gas(coalbed methan... Coal measure gas(also known as coal-bearing unconventional gas)is the key field and development direction of unconventional natural gas in recent years.The exploration and evaluation of coal measure gas(coalbed methane,coal shale gas and coal measure tight sandstone gas)from single coalbed methane has greatly expanded the field and space of resource evaluation,which is of positive significance for realizing the comprehensive utilization of coal resources,maximizing the benefits and promoting the innovation of oil and gas geological theory and technological advances in exploration and development.For the first time,in Yangmeishu Syncline of Western Guizhou Province,the public welfare coalbed methane geological survey project of China Geological Survey has been carried out a systematic geological survey of coal measure gas for the Upper Permian Longtan Formation,identified the geological conditions of coal measure gas and found high quality resources.The total geological resource quantity of coalbed methane and coal shale gas is 51.423×109 m3 and the geological resource abundance is up to 566×106 m3/km2.In this area,the coal measures are characterized by many layers of minable coal seams,large total thickness,thin to the medium thickness of the single layer,good gas-bearing property of coal seams and coal measure mudstone and sandstone,good reservoir physical property and high-pressure coefficient.According to the principle of combination of high quality and similarity of key parameters of the coal reservoir,the most favorable intervals are No.5-2,No.7 and No.13-2 coal seam in Well YMC1.And the pilot tests are carried out on coal seams and roof silty mudstone,such as staged perforation,increasing hydraulic fracturing scale and"three gas"production.The high and stable industrial gas flow with a daily gas output of more than 4000 m3 has been obtained,which has realized the breakthrough in the geological survey of coal measure gas in Southwest China.Based on the above investigation results,the geological characteristics of coal measure gas in the multi-thin-coal-seam-developed area and the coexploration and co-production methods,such as the optimization method of favorable intervals,the highefficiency fracturing and reservoir reconstruction method of coal measures,and the"three gas"drainage and production system,are systematically summarized in this paper.It will provide a reference for efficient exploration and development of coal measure gas in similar geological conditions in China. 展开更多
关键词 Coal measure gas Reservoir characteristics favorable interval optimization Reservoir fracturing reconstruction Coal measures"three gas"drainage oil and gas exploration enginerreing Upper Permian Longtan Formation Yangmeishu Syncline Western Guizhou Prov
下载PDF
Geological characteristics of unconventional tight oil reservoir (10^(9) t): A case study of Upper Cretaceous Qingshankou Formation, northern Songliao Basin, NE China
8
作者 Li-zhi Shi Zhuo-zhuo Wang +4 位作者 Zhan-tao Xing Shan Meng Shuai Guo Si-miao Wu Li-yan Luo 《China Geology》 CAS CSCD 2024年第1期51-62,共12页
The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important r... The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area. 展开更多
关键词 Unconventional oil and gas Tight oil Thin-bedded mudstone-siltstone-sandstone reservoir Qijia area Qingshankou Formation oil and gas exploration engineering Songliao Basin Daqing oilfield
下载PDF
Distributed optical fiber acoustic sensor for in situ monitoring of marine natural gas hydrates production for the first time in the Shenhu Area,China 被引量:2
9
作者 Xiang-ge He Xue-min Wu +6 位作者 Lei Wang Qian-yong Liang Li-juan Gu Fei Liu Hai-long Lu Yi Zhang Min Zhang 《China Geology》 2022年第2期322-329,共8页
The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole p... The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect. 展开更多
关键词 gas hydrate production monitoring Optical fiber sensor Distributed acoustic sensor In situ monitoring Fluid type NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South China Sea
下载PDF
A 3D basin modeling study of the factors controlling gas hydrate accumulation in the Shenhu Area of the South China Sea 被引量:1
10
作者 Zhi-yuan Xie Jian-gong Wei +2 位作者 Jin-yun Zheng Zhen Sun Kun Zhang 《China Geology》 2022年第2期218-233,共16页
Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea.However,there remains a lot of key questions yet to be resolved,particularly about the mechanisms... Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea.However,there remains a lot of key questions yet to be resolved,particularly about the mechanisms and the controls of gas hydrates enrichment.Numerical simulaution would play signficant role in addressing these questions.This study focused on the gas hydrate exploration in the Shenhu Area,Northern South China Sea.Based on the newly obtained borehole and multichannel reflection seismic data,the authors conducted an integrated 3D basin modeling study on gas hydrate.The results indicate that the Shenhu Area has favorable conditions for gas hydrate accumulation,such as temperature,pressure,hydrocarbon source,and tectonic setting.Gas hydrates are most concentrated in the Late Miocene strata,particularly in the structual highs between the Baiyun Sag and the Liwan Sag,and area to the south of it.It also proved the existence of overpressure in the main sag of source rocks,which was subject to compaction disequilibrium and hydrocarbon generation.It also shown that the regional fault activity is not conducive to gas hydrate accumulation due to excess gas seepage.The authors conjecture that fault activity may slightly weaken overpressure for the positive effect of hydrocarbon expulsion and areas lacking regional fault activity have better potential. 展开更多
关键词 3D basin modeling gas hydrates Fault reactivation OVERPRESSURE gas seepage Heat flow NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South China Sea
下载PDF
Stability analysis of seabed strata and casing structure during the natural gas hydrates exploitation by depressurization in horizontal wells in South China Sea 被引量:1
11
作者 Peng-fei Xie Lin Yang +7 位作者 Qian-yong Liang Xu-hui Zhang Liang-hua Zhang Bin Zhang Xiao-bing Lu Hui-ce He Xue-min Wu Yi-fei Dong 《China Geology》 2022年第2期300-309,共10页
Natural gas hydrates(NGHs)are a new type of clean energy with great development potential.However,it is urgent to achieve safe and economical NGHs development and utilization.This study established a physical model of... Natural gas hydrates(NGHs)are a new type of clean energy with great development potential.However,it is urgent to achieve safe and economical NGHs development and utilization.This study established a physical model of the study area using the FLAC^(3D) software based on the key parameters of the NGHs production test area in the South China Sea,including the depressurization method,and mechanical parameters of strata,NGHs occurrence characteristics,and the technological characteristics of horizontal wells.Moreover,this study explored the law of influences of the NGHs dissociation range on the stability of the overburden strata and the casing structure of a horizontal well.The results are as follows.With the dissociation of NGHs,the overburden strata of the NGHs dissociation zone subsided and formed funnelshaped zones and then gradually stabilized.However,the upper interface of the NGHs dissociation zone showed significant redistribution and discontinuity of stress.Specifically,distinct stress concentration and corresponding large deformation occurred in the build-up section of the horizontal well,which was thus prone to suffering shear failure.Moreover,apparent end effects occurred at the end of the horizontal well section and might cause the deformation and failure of the casing structure.Therefore,it is necessary to take measures in the build-up section and at the end of the horizontal section of the horizontal well to prevent damage and ensure the wellbore safety in the long-term NGHs exploitation. 展开更多
关键词 Natural gas hydrates(NGHs) Exploitation by depressurization Horizontal well Stratum subsidence Shear failure NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South China Sea
下载PDF
Application of frequency division inversion in the prediction of heterogeneous natural gas hydrates reservoirs in the Shenhu Area,South China Sea
12
作者 Shu-yu Wu Jun Liu +5 位作者 Hua-ning Xu Chang-ling Liu Fu-long Ning Hong-xian Chu Hao-ran Wu Kai Wang 《China Geology》 2022年第2期251-266,共16页
Drilling results suggest that the thickness of natural gas hydrates(NGHs)in the Shenhu Area,South China Sea(SCS)are spatially heterogenous,making it difficult to accurately assess the NGHs resources in this area.In th... Drilling results suggest that the thickness of natural gas hydrates(NGHs)in the Shenhu Area,South China Sea(SCS)are spatially heterogenous,making it difficult to accurately assess the NGHs resources in this area.In the case that free gas exists beneath hydrate deposits,the frequency of the hydrate deposits will be noticeably attenuated,with the attenuation degree mainly affected by pore development and free gas content.Therefore,the frequency can be used as an important attribute to identify hydrate reservoirs.Based on the time-frequency characteristics of deposits,this study predicted the spatial distribution of hydrates in this area using the frequency division inversion method as follows.Firstly,the support vector machine(SVM)method was employed to study the amplitude versus frequency(AVF)response based on seismic and well logging data.Afterward,the AVF response was introduced as independent information to establish the nonlinear relationship between logging data and seismic waveform.Then,the full frequency band information of the seismic data was fully utilized to obtain the results of frequency division inversion.The inversion results can effectively broaden the frequency band,reflect the NGHs distribution,and reveal the NGHs reservoirs of two types,namely the fluid migration pathway type and the in situ self-generation self-storage diffusion type.Moreover,the inversion results well coincide with the drilling results.Therefore,it is feasible to use the frequency division inversion to predict the spatial distribution of heterogeneous NGHs reservoirs,which facilitates the optimization of favorable drilling targets and is crucial to the resource potential assessment of NGHs. 展开更多
关键词 gas hydrates HETEROGENEITY Frequency division inversion Self-generation and self-storage diffusion type NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South China Sea
下载PDF
Identification of functionally active aerobic methanotrophs and their methane oxidation potential in sediments from the Shenhu Area,South China Sea
13
作者 Jing Li Chang-ling Liu +4 位作者 Neng-you Wu Xiao-qing Xu Gao-wei Hu Yan-long Li Qing-guo Meng 《China Geology》 2022年第2期285-292,共8页
Large amounts of gas hydrate are distributed in the northern slope of the South China Sea,which is a potential threat of methane leakage.Aerobic methane oxidation by methanotrophs,significant methane biotransformation... Large amounts of gas hydrate are distributed in the northern slope of the South China Sea,which is a potential threat of methane leakage.Aerobic methane oxidation by methanotrophs,significant methane biotransformation that occurs in sediment surface and water column,can effectively reduce atmospheric emission of hydrate-decomposed methane.To identify active aerobic methanotrophs and their methane oxidation potential in sediments from the Shenhu Area in the South China Sea,multi-day enrichment incubations were conducted in this study.The results show that the methane oxidation rates in the studied sediments were 2.03‒2.36μmol/gdw/d,which were higher than those obtained by sediment incubations from other areas in marine ecosystems.Thus the authors suspect that the methane oxidation potential of methanotrophs was relatively higher in sediments from the Shenhu Area.After the incubations family Methylococcaea(type I methanotrophs)mainly consisted of genus Methylobacter and Methylococcaea_Other were predominant with an increased proportion of 70.3%,whereas Methylocaldum decreased simultaneously in the incubated sediments.Collectively,this study may help to gain a better understanding of the methane biotransformation in the Shenhu Area. 展开更多
关键词 Active methanotrophs Aerobic methane oxidation Marine sediments Natural gas hydrates NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South China Sea
下载PDF
中国东部海区重点盆地演化与中深层油气资源潜力
14
作者 王明健 陈晓辉 +3 位作者 朱晓青 黄龙 李汞 潘军 《海洋地质前沿》 CSCD 北大核心 2024年第9期1-13,共13页
石油和天然气资源的短缺已经严重制约了中国国民经济的发展,开拓油气勘探新领域和寻找后备油气基地已经上升为国家战略。以近些年海洋区域调查实测资料为基础,结合前人研究成果,对中国东部海域重点盆地构造特征和演化过程进行研究,分析... 石油和天然气资源的短缺已经严重制约了中国国民经济的发展,开拓油气勘探新领域和寻找后备油气基地已经上升为国家战略。以近些年海洋区域调查实测资料为基础,结合前人研究成果,对中国东部海域重点盆地构造特征和演化过程进行研究,分析各盆地油气成藏要素和成藏条件,并指出有利勘探区域。研究表明:按照盆地发育位置和成因,中国东部海域沉积盆地可划分为2种类型;受块体之间相互作用的控制,各盆地经历了不同的构造演化历史,发育明显不同的构造和地层特征,进而导致油气成藏要素和成藏模式截然不同;渤海湾盆地油气资源主要赋存于古近系中上部、新近系下部和前新生界潜山,北黄海盆地勘探重点是东部坳陷中生界,南黄海盆地应以中—古生界海相油气勘探为重点,东海陆架盆地则应兼顾中生界和新生界油气勘探。研究结果可以为中国东部海域沉积盆地油气勘探提供一定的参考。 展开更多
关键词 中国东部海区 沉积盆地 油气 成藏 有利勘探区域
下载PDF
Experimental study on characteristics of pore water conversion during methane hydrates formation in unsaturated sand 被引量:4
15
作者 Yun-kai Ji Chang-ling Liu +4 位作者 Zhun Zhang Qing-guo Meng Le-le Liu Yong-chao Zhang Neng-you Wu 《China Geology》 2022年第2期276-284,共9页
Understanding the pore water conversion characteristics during hydrate formation in porous media is important to study the accumulation mechanism of marine gas hydrate.In this study,low-field NMR was used to study the... Understanding the pore water conversion characteristics during hydrate formation in porous media is important to study the accumulation mechanism of marine gas hydrate.In this study,low-field NMR was used to study the pore water conversion characteristics during methane hydrate formation in unsaturated sand samples.Results show that the signal intensity of T_(2) distribution isn’t affected by sediment type and pore pressure,but is affected by temperature.The increase in the pressure of hydrogen-containing gas can cause the increase in the signal intensity of T_(2) distribution.The heterogeneity of pore structure is aggravated due to the hydrate formation in porous media.The water conversion rate fluctuates during the hydrate formation.The sand size affects the water conversion ratio and rate by affecting the specific surface of sand in unsaturated porous media.For the fine sand sample,the large specific surface causes a large gas-water contact area resulting in a higher water conversion rate,but causes a large water-sand contact area resulting in a low water conversion ratio(C_(w)=96.2%).The clay can reduce the water conversion rate and ratio,especially montmorillonite(C_(w)=95.8%).The crystal layer of montmorillonite affects the pore water conversion characteristics by hindering the conversion of interlayer water. 展开更多
关键词 Porous media Unsaturated sand Methane hydrates Low-field NMR Pore water conversion Hydrate formation NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South China Sea
下载PDF
Experimental investigation of hydrate formation in water-dominated pipeline and its influential factors 被引量:1
16
作者 Li Huang Jia-le Kang +6 位作者 Xiao-dong Shen Jian-ye Sun Qing-guo Meng Qiang Chen Gao-wei Hu Chang-ling Liu Neng-you Wu 《China Geology》 2022年第2期310-321,共12页
Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are in... Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are investigated in a fluid circulation system with a total length of 39 m.A 9-m section pipe is transparent consisted of two complete rectangular loops.By means of pressurization with gas-saturated water,the system can gradually reach the equilibrium conditions.The result shows that the hydrates are delayed to appear as floccules or thin films covering the methane bubbles.When the circulation velocity is below 750 rpm,hydrate is finally deposited as a“hydrate bed”at upmost of inner wall,narrowing the flow channel of the pipeline.Nevertheless,no plugging is observed during all the experimental runs.The five stages of hydrate deposition are proposed based on the experimental results.It is also revealed that a higher driving pressure is needed at a lower flow rate.The driving force of hydrate formation from gas and water obtained by melting hydrate is higher than that from fresh water with no previous hydrate history.The authors hope that this work will be beneficial for the flow assurance of the following oceanic field hydrate recovery trials. 展开更多
关键词 PIPELINE Water production CIRCULATION gas hydrate Formation morphology gas concentration Flowrate NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South China Sea
下载PDF
世界深水油气勘探形势分析与思考 被引量:8
17
作者 温志新 王建君 +5 位作者 王兆明 贺正军 宋成鹏 刘小兵 张宁宁 季天愚 《石油勘探与开发》 EI CAS CSCD 北大核心 2023年第5期924-936,共13页
利用标普全球、睿咨得等商业数据及各油公司的公开信息,对全球深水油气勘探趋势、深水油气发现特点、七大国际油公司深水油气勘探业务布局进行系统分析。结果表明:深水领域是当前全球油气勘探发现最重要的领域,被动大陆边缘盆地深水大... 利用标普全球、睿咨得等商业数据及各油公司的公开信息,对全球深水油气勘探趋势、深水油气发现特点、七大国际油公司深水油气勘探业务布局进行系统分析。结果表明:深水领域是当前全球油气勘探发现最重要的领域,被动大陆边缘盆地深水大发现油气田个数及储量均最多,深水油气大发现对海域新发现油气总储量的贡献最大。岩性油气藏发现越来越多,且油气发现主要分布于中—新生界;七大国际油公司广泛活跃在深水油气勘探和开发各个环节,并发挥着全球引领作用。结合多年对全球油气地质与资源评价形成的理论认识,提出未来有利的深水勘探领域主要集中在大西洋两岸、印度洋周缘、北冰洋周缘等3大领域。提出了开拓海外深水油气勘探业务的6点建议:拓宽多用户地震资料获取渠道,提高深水勘探科学选区水平;加大重点领域深水勘探项目获取力度;灵活进退勘探区块;以大权益获取区块,采用“双勘探模式”经营;加强与深水技术领先国际油公司的合作;提升商务运作能力,逐步实现“非作业者”向“作业者”转变。 展开更多
关键词 世界含油气盆地 深水 油气 勘探形势 国际油公司 有利勘探领域
下载PDF
Velocity-porosity relationships in hydrate-bearing sediments measured from pressure cores,Shenhu Area,South China Sea
18
作者 Lin Lin Jun Cao +4 位作者 Jin Qian Jiu-jing Shang Wei Zhang Jin-gan Lu Jin-qiang Liang 《China Geology》 2022年第2期267-275,共9页
Evaluating velocity-porosity relationships of hydrate-bearing marine sediments is essential for characterizing natural gas hydrates below seafloor as either a potential energy resource or geohazards risks.Four sites h... Evaluating velocity-porosity relationships of hydrate-bearing marine sediments is essential for characterizing natural gas hydrates below seafloor as either a potential energy resource or geohazards risks.Four sites had cored using pressure and non-pressure methods during the gas hydrates drilling project(GMGS4)expedition at Shenhu Area,north slope of the South China Sea.Sediments were cored above,below,and through the gas-hydrate-bearing zone guided with logging-while-drilling analysis results.Gamma density and P-wave velocity were measured in each pressure core before subsampling.Methane hydrates volumes in total 62 samples were calculated from the moles of excess methane collected during depressurization experiments.The concentration of methane hydrates ranged from 0.3%to 32.3%.The concentrations of pore fluid(25.44%to 68.82%)and sediments(23.63%to 54.28%)were calculated from the gamma density.The regression models of P-wave velocity were derived and compared with a global empirical equation derived from shallow,unconsolidated sediments data.The results were close to the global trend when the fluid concentration is larger than the critical porosity.It is concluded that the dominant factor of P-wave velocity in hydrate-bearing marine sediments is the presence of the hydrate.Methane hydrates can reduce the fluid concentration by discharging the pore fluid and occupying the original pore space of sediments after its formation. 展开更多
关键词 Natural gas hydrates(NGHs) Methane hydrate P-wave velocity POROSITY Saturation Pressure-core NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South China Sea
下载PDF
渤海湾盆地馆陶组热储特征与地热资源评价 被引量:6
19
作者 饶松 肖红平 +3 位作者 王朱亭 高腾 施亦做 黄顺德 《天然气工业》 EI CAS CSCD 北大核心 2023年第5期141-152,共12页
渤海湾盆地发育多类、多套热储层,其中新近系馆陶组砂岩热储埋深适中、厚度大、分布广泛,为盆地主力热储之一,但过去的研究缺乏针对全区馆陶组地热资源的系统性评价。为此,在全盆地现今地温场特征研究基础上,通过收集整理钻井、地质和... 渤海湾盆地发育多类、多套热储层,其中新近系馆陶组砂岩热储埋深适中、厚度大、分布广泛,为盆地主力热储之一,但过去的研究缺乏针对全区馆陶组地热资源的系统性评价。为此,在全盆地现今地温场特征研究基础上,通过收集整理钻井、地质和物探资料,系统刻画了馆陶组热储平面展布特征,并评价了馆陶组热储地热资源量,圈定了地热资源有利区。研究结果表明:①渤海湾盆地第四系—古近系现今平均地温梯度为34.7±3.5℃/km,平均大地热流值为64.4±8.1 mW/m^(2),反映了新生代裂谷盆地属性,具备了形成大型中—低温地热田的地热背景;②馆陶组热储温度分布区间为19.6~96.2℃,平均值为56.3℃,相对高温区主要出现在黄骅坳陷、渤中坳陷,冀中坳陷等地区,总体分布趋势与盆地现今地温场格局基本一致;③盆地110个县级以上城市馆陶组热储地热资源量折合标煤99.6×10^(8) t,平均地热资源丰度148.6×10^(4) t/km^(2),属于资源条件最好的一类油田地热资源,其中66.7%集中分布在华北油区;④盆地馆陶组热储最大概率地热资源量折合标准煤662.2×10^(8) t,平均地热资源丰度为72.4×10^(4) t/km^(2)。结论认为,根据热储特征和地面、经济条件,可在全盆地圈定出9个馆陶组地热资源有利区,即邢衡隆起区、南宫凹陷区、丘县凹陷区、饶阳凹陷区、武清凹陷区、岐口凹陷区、埕宁隆起区、东营凹陷区、昌潍凹陷区。 展开更多
关键词 渤海湾盆地 馆陶组 热储 热储特征 地热资源评价 现今地温场 油区地热 勘探有利区
下载PDF
北羌塘坳陷南部胜利河油浸白云岩 被引量:1
20
作者 吴珍汉 季长军 +3 位作者 赵珍 康少伟 赵荣涛 雷云龙 《地球学报》 CAS CSCD 北大核心 2023年第3期411-418,共8页
北羌塘坳陷南部胜利河上游出露油浸白云岩,层位为中侏罗统布曲组上部,近水平产状,下伏TOC含量高的黑色泥页岩。油浸白云岩呈灰黑色,原岩为生物碎屑灰岩,经历了白云岩化作用;表面覆盖烟灰状沥青,内含易于挥发的轻质油;地表样品含油率为76... 北羌塘坳陷南部胜利河上游出露油浸白云岩,层位为中侏罗统布曲组上部,近水平产状,下伏TOC含量高的黑色泥页岩。油浸白云岩呈灰黑色,原岩为生物碎屑灰岩,经历了白云岩化作用;表面覆盖烟灰状沥青,内含易于挥发的轻质油;地表样品含油率为765×10^(-6),远高于南羌塘坳陷隆鄂尼—昂达尔错古油藏地表出露的白云岩油砂(含油率(12~236)×10^(-6))。胜利河油浸白云岩裂隙发育,孔隙度为6.49%、渗透率为3.81 mD,属于羌塘盆地有利储层。油气地球化学及油源对比结果显示,胜利河油浸白云岩原油来源于中下侏罗统富有机质泥页岩。胜利河油浸白云岩对北羌塘坳陷油气勘查评价具有重要指示意义。 展开更多
关键词 油浸白云岩 优质储层 油气勘探前景 胜利河地区 北羌塘坳陷
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部