An advanced edge-based method of feature detection and extraction is developed for object description in digital images. It is useful for the comparison of different images of the same scene in aerial imagery, for des...An advanced edge-based method of feature detection and extraction is developed for object description in digital images. It is useful for the comparison of different images of the same scene in aerial imagery, for describing and recognizing categories, for automatic building extraction and for finding the mutual regions in image matching. The method includes directional filtering and searching for straight edge segments in every direction and scale, taking into account edge gradient signs. Line segments are ordered with respect to their orientation and average gradients in the region in question. These segments are used for the construction of an object descriptor. A hierarchical set of feature descriptors is developed, taking into consideration the proposed straight line segment detector. Comparative performance is evaluated on the noisy model and in real aerial and satellite imagery.展开更多
Soybean leaf morphology is one of the most important morphological and biological characteristics of soybean.The germplasm gene differences of soybeans can lead to different phenotypic traits,among which soybean leaf ...Soybean leaf morphology is one of the most important morphological and biological characteristics of soybean.The germplasm gene differences of soybeans can lead to different phenotypic traits,among which soybean leaf morphology is an important parameter that directly reflects the difference in soybean germplasm.To realize the morphological classification of soybean leaves,a method was proposed based on deep learning to automatically detect soybean leaves and classify leaf morphology.The morphology of soybean leaves included lanceolate,oval,ellipse and round.First,an image collection platform was designed to collect images of soybean leaves.Then,the feature pyramid networks–single shot multibox detector(FPN-SSD)model was proposed to detect the top leaflets of soybean leaves on the collected images.Finally,a classification model based on knowledge distillation was proposed to classify different morphologies of soybean leaves.The obtained results indicated an overall classification accuracy of 0.956 over a private dataset of 3200 soybean leaf images,and the accuracy of classification for each morphology was 1.00,0.97,0.93 and 0.94.The results showed that this method could effectively classify soybean leaf morphology and had great application potential in analyzing other phenotypic traits of soybean.展开更多
One of the main requirements of cognitive radio systems is the ability to detect the presence of the primary user with fast speed and precise accuracy. To achieve that, a possible two-stage spectrum sensing scheme is ...One of the main requirements of cognitive radio systems is the ability to detect the presence of the primary user with fast speed and precise accuracy. To achieve that, a possible two-stage spectrum sensing scheme is suggested in this paper. More specifically, a fast spectrum sensing algorithm based on the energy detection is introduced focusing on the coarse detection. A complementary fine spectrum sensing algorithm adopts one-order cyclostationary properties of primary user's signals in time domain. Since the one-order feature detection is performed in time domain, the real-time operation and low-computational complexity can be achieved. Also, it drastically reduces hardware burdens and power consumption as opposed to two-order feature detection. The sensing performance of the proposed method is studied and the analytical performance results are given. The results indicate that better performance can be achieved in proposed two-stage sensing detection compared to the conventional energy detector.展开更多
文摘An advanced edge-based method of feature detection and extraction is developed for object description in digital images. It is useful for the comparison of different images of the same scene in aerial imagery, for describing and recognizing categories, for automatic building extraction and for finding the mutual regions in image matching. The method includes directional filtering and searching for straight edge segments in every direction and scale, taking into account edge gradient signs. Line segments are ordered with respect to their orientation and average gradients in the region in question. These segments are used for the construction of an object descriptor. A hierarchical set of feature descriptors is developed, taking into consideration the proposed straight line segment detector. Comparative performance is evaluated on the noisy model and in real aerial and satellite imagery.
基金Supported by Heilongjiang Province Philosophy and Social Science Research Planning Project(17TQB059)。
文摘Soybean leaf morphology is one of the most important morphological and biological characteristics of soybean.The germplasm gene differences of soybeans can lead to different phenotypic traits,among which soybean leaf morphology is an important parameter that directly reflects the difference in soybean germplasm.To realize the morphological classification of soybean leaves,a method was proposed based on deep learning to automatically detect soybean leaves and classify leaf morphology.The morphology of soybean leaves included lanceolate,oval,ellipse and round.First,an image collection platform was designed to collect images of soybean leaves.Then,the feature pyramid networks–single shot multibox detector(FPN-SSD)model was proposed to detect the top leaflets of soybean leaves on the collected images.Finally,a classification model based on knowledge distillation was proposed to classify different morphologies of soybean leaves.The obtained results indicated an overall classification accuracy of 0.956 over a private dataset of 3200 soybean leaf images,and the accuracy of classification for each morphology was 1.00,0.97,0.93 and 0.94.The results showed that this method could effectively classify soybean leaf morphology and had great application potential in analyzing other phenotypic traits of soybean.
基金supported by the National Natural Science Foundation of China (60972039,60972041)the Hi-Tech Research and Development Program of China (2009AA01Z241)+2 种基金the National Postdoctoral Research Program (20090451239)the Natural Science Fund for Higher Education of Jiangsu Province (09KJB510012)the Important National Science and Technology Specific Project of China (2009ZX03003-006)
文摘One of the main requirements of cognitive radio systems is the ability to detect the presence of the primary user with fast speed and precise accuracy. To achieve that, a possible two-stage spectrum sensing scheme is suggested in this paper. More specifically, a fast spectrum sensing algorithm based on the energy detection is introduced focusing on the coarse detection. A complementary fine spectrum sensing algorithm adopts one-order cyclostationary properties of primary user's signals in time domain. Since the one-order feature detection is performed in time domain, the real-time operation and low-computational complexity can be achieved. Also, it drastically reduces hardware burdens and power consumption as opposed to two-order feature detection. The sensing performance of the proposed method is studied and the analytical performance results are given. The results indicate that better performance can be achieved in proposed two-stage sensing detection compared to the conventional energy detector.