A new method for solving the tiling problem of surface reconstruction is proposed. The proposed method uses a snake algorithm to segment the original images, the contours are then transformed into strings by Freeman'...A new method for solving the tiling problem of surface reconstruction is proposed. The proposed method uses a snake algorithm to segment the original images, the contours are then transformed into strings by Freeman' s code. Symbolic string matching technique is applied to establish a correspondence between the two consecutive contours. The surface is composed of the pieces reconstructed from the correspondence points. Experimental results show that the proposed method exhibits a good behavior for the quality of surface reconstruction and its time complexity is proportional to mn where m and n are the numbers of vertices of the two consecutive slices, respectively.展开更多
To extract features of fabric defects effectively and reduce dimension of feature space,a feature extraction method of fabric defects based on complex contourlet transform (CCT) and principal component analysis (PC...To extract features of fabric defects effectively and reduce dimension of feature space,a feature extraction method of fabric defects based on complex contourlet transform (CCT) and principal component analysis (PCA) is proposed.Firstly,training samples of fabric defect images are decomposed by CCT.Secondly,PCA is applied in the obtained low-frequency component and part of highfrequency components to get a lower dimensional feature space.Finally,components of testing samples obtained by CCT are projected onto the feature space where different types of fabric defects are distinguished by the minimum Euclidean distance method.A large number of experimental results show that,compared with PCA,the method combining wavdet low-frequency component with PCA (WLPCA),the method combining contourlet transform with PCA (CPCA),and the method combining wavelet low-frequency and highfrequency components with PCA (WPCA),the proposed method can extract features of common fabric defect types effectively.The recognition rate is greatly improved while the dimension is reduced.展开更多
Wake-Up-Word Speech Recognition task (WUW-SR) is a computationally very demand, particularly the stage of feature extraction which is decoded with corresponding Hidden Markov Models (HMMs) in the back-end stage of the...Wake-Up-Word Speech Recognition task (WUW-SR) is a computationally very demand, particularly the stage of feature extraction which is decoded with corresponding Hidden Markov Models (HMMs) in the back-end stage of the WUW-SR. The state of the art WUW-SR system is based on three different sets of features: Mel-Frequency Cepstral Coefficients (MFCC), Linear Predictive Coding Coefficients (LPC), and Enhanced Mel-Frequency Cepstral Coefficients (ENH_MFCC). In (front-end of Wake-Up-Word Speech Recognition System Design on FPGA) [1], we presented an experimental FPGA design and implementation of a novel architecture of a real-time spectrogram extraction processor that generates MFCC, LPC, and ENH_MFCC spectrograms simultaneously. In this paper, the details of converting the three sets of spectrograms 1) Mel-Frequency Cepstral Coefficients (MFCC), 2) Linear Predictive Coding Coefficients (LPC), and 3) Enhanced Mel-Frequency Cepstral Coefficients (ENH_MFCC) to their equivalent features are presented. In the WUW- SR system, the recognizer’s frontend is located at the terminal which is typically connected over a data network to remote back-end recognition (e.g., server). The WUW-SR is shown in Figure 1. The three sets of speech features are extracted at the front-end. These extracted features are then compressed and transmitted to the server via a dedicated channel, where subsequently they are decoded.展开更多
In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance...In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance degradation in noisy conditions or distorted channels. It is necessary to search for more robust feature extraction methods to gain better performance in adverse conditions. This paper investigates the performance of conventional and new hybrid speech feature extraction algorithms of Mel Frequency Cepstrum Coefficient (MFCC), Linear Prediction Coding Coefficient (LPCC), perceptual linear production (PLP), and RASTA-PLP in noisy conditions through using multivariate Hidden Markov Model (HMM) classifier. The behavior of the proposal system is evaluated using TIDIGIT human voice dataset corpora, recorded from 208 different adult speakers in both training and testing process. The theoretical basis for speech processing and classifier procedures were presented, and the recognition results were obtained based on word recognition rate.展开更多
文摘A new method for solving the tiling problem of surface reconstruction is proposed. The proposed method uses a snake algorithm to segment the original images, the contours are then transformed into strings by Freeman' s code. Symbolic string matching technique is applied to establish a correspondence between the two consecutive contours. The surface is composed of the pieces reconstructed from the correspondence points. Experimental results show that the proposed method exhibits a good behavior for the quality of surface reconstruction and its time complexity is proportional to mn where m and n are the numbers of vertices of the two consecutive slices, respectively.
基金National Natural Science Foundation of China(No.60872065)the Key Laboratory of Textile Science&Technology,Ministry of Education,China(No.P1111)+1 种基金the Key Laboratory of Advanced Textile Materials and Manufacturing Technology,Ministry of Education,China(No.2010001)the Priority Academic Program Development of Jiangsu Higher Education Institution,China
文摘To extract features of fabric defects effectively and reduce dimension of feature space,a feature extraction method of fabric defects based on complex contourlet transform (CCT) and principal component analysis (PCA) is proposed.Firstly,training samples of fabric defect images are decomposed by CCT.Secondly,PCA is applied in the obtained low-frequency component and part of highfrequency components to get a lower dimensional feature space.Finally,components of testing samples obtained by CCT are projected onto the feature space where different types of fabric defects are distinguished by the minimum Euclidean distance method.A large number of experimental results show that,compared with PCA,the method combining wavdet low-frequency component with PCA (WLPCA),the method combining contourlet transform with PCA (CPCA),and the method combining wavelet low-frequency and highfrequency components with PCA (WPCA),the proposed method can extract features of common fabric defect types effectively.The recognition rate is greatly improved while the dimension is reduced.
文摘Wake-Up-Word Speech Recognition task (WUW-SR) is a computationally very demand, particularly the stage of feature extraction which is decoded with corresponding Hidden Markov Models (HMMs) in the back-end stage of the WUW-SR. The state of the art WUW-SR system is based on three different sets of features: Mel-Frequency Cepstral Coefficients (MFCC), Linear Predictive Coding Coefficients (LPC), and Enhanced Mel-Frequency Cepstral Coefficients (ENH_MFCC). In (front-end of Wake-Up-Word Speech Recognition System Design on FPGA) [1], we presented an experimental FPGA design and implementation of a novel architecture of a real-time spectrogram extraction processor that generates MFCC, LPC, and ENH_MFCC spectrograms simultaneously. In this paper, the details of converting the three sets of spectrograms 1) Mel-Frequency Cepstral Coefficients (MFCC), 2) Linear Predictive Coding Coefficients (LPC), and 3) Enhanced Mel-Frequency Cepstral Coefficients (ENH_MFCC) to their equivalent features are presented. In the WUW- SR system, the recognizer’s frontend is located at the terminal which is typically connected over a data network to remote back-end recognition (e.g., server). The WUW-SR is shown in Figure 1. The three sets of speech features are extracted at the front-end. These extracted features are then compressed and transmitted to the server via a dedicated channel, where subsequently they are decoded.
文摘In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance degradation in noisy conditions or distorted channels. It is necessary to search for more robust feature extraction methods to gain better performance in adverse conditions. This paper investigates the performance of conventional and new hybrid speech feature extraction algorithms of Mel Frequency Cepstrum Coefficient (MFCC), Linear Prediction Coding Coefficient (LPCC), perceptual linear production (PLP), and RASTA-PLP in noisy conditions through using multivariate Hidden Markov Model (HMM) classifier. The behavior of the proposal system is evaluated using TIDIGIT human voice dataset corpora, recorded from 208 different adult speakers in both training and testing process. The theoretical basis for speech processing and classifier procedures were presented, and the recognition results were obtained based on word recognition rate.