期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Disruption prediction based on fusion feature extractor on J-TEXT
1
作者 郑玮 薛凤鸣 +9 位作者 陈忠勇 沈呈硕 艾鑫坤 钟昱 王能超 张明 丁永华 陈志鹏 杨州军 潘垣 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期12-23,共12页
Predicting disruptions across different tokamaks is necessary for next generation device.Future large-scale tokamaks can hardly tolerate disruptions at high performance discharge,which makes it difficult for current d... Predicting disruptions across different tokamaks is necessary for next generation device.Future large-scale tokamaks can hardly tolerate disruptions at high performance discharge,which makes it difficult for current data-driven methods to obtain an acceptable result.A machine learning method capable of transferring a disruption prediction model trained on one tokamak to another is required to solve the problem.The key is a feature extractor which is able to extract common disruption precursor traces in tokamak diagnostic data,and can be easily transferred to other tokamaks.Based on the concerns above,this paper presents a deep feature extractor,namely,the fusion feature extractor(FFE),which is designed specifically for extracting disruption precursor features from common diagnostics on tokamaks.Furthermore,an FFE-based disruption predictor on J-TEXT is demonstrated.The feature extractor is aimed to extracting disruption-related precursors and is designed according to the precursors of disruption and their representations in common tokamak diagnostics.Strong inductive bias on tokamak diagnostics data is introduced.The paper presents the evolution of the neural network feature extractor and its comparison against general deep neural networks,as well as a physics-based feature extraction with a traditional machine learning method.Results demonstrate that the FFE may reach a similar effect with physics-guided manual feature extraction,and obtain a better result compared with other deep learning methods. 展开更多
关键词 feature extractor disruption prediction deep learning tokamak diagnostics
下载PDF
Nonlinear industrial process fault diagnosis with latent label consistency and sparse Gaussian feature learning
2
作者 LI Xian-ling ZHANG Jian-feng +2 位作者 ZHAO Chun-hui DING Jin-liang SUN You-xian 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期3956-3973,共18页
With the increasing complexity of industrial processes, the high-dimensional industrial data exhibit a strong nonlinearity, bringing considerable challenges to the fault diagnosis of industrial processes. To efficient... With the increasing complexity of industrial processes, the high-dimensional industrial data exhibit a strong nonlinearity, bringing considerable challenges to the fault diagnosis of industrial processes. To efficiently extract deep meaningful features that are crucial for fault diagnosis, a sparse Gaussian feature extractor(SGFE) is designed to learn a nonlinear mapping that projects the raw data into the feature space with the fault label dimension. The feature space is described by the one-hot encoding of the fault category label as an orthogonal basis. In this way, the deep sparse Gaussian features related to fault categories can be gradually learned from the raw data by SGFE. In the feature space,the sparse Gaussian(SG) loss function is designed to constrain the distribution of features to multiple sparse multivariate Gaussian distributions. The sparse Gaussian features are linearly separable in the feature space, which is conducive to improving the accuracy of the downstream fault classification task. The feasibility and practical utility of the proposed SGFE are verified by the handwritten digits MNIST benchmark and Tennessee-Eastman(TE) benchmark process,respectively. 展开更多
关键词 nonlinear fault diagnosis multiple multivariate Gaussian distributions sparse Gaussian feature learning Gaussian feature extractor
下载PDF
A Soft Sensor with Light and Efficient Multi-scale Feature Method for Multiple Sampling Rates in Industrial Processing
3
作者 Dezheng Wang Yinglong Wang +4 位作者 Fan Yang Liyang Xu Yinong Zhang Yiran Chen Ning Liao 《Machine Intelligence Research》 EI CSCD 2024年第2期400-410,共11页
In industrial process control systems,there is overwhelming evidence corroborating the notion that economic or technical limitations result in some key variables that are very difficult to measure online.The data-driv... In industrial process control systems,there is overwhelming evidence corroborating the notion that economic or technical limitations result in some key variables that are very difficult to measure online.The data-driven soft sensor is an effective solution because it provides a reliable and stable online estimation of such variables.This paper employs a deep neural network with multiscale feature extraction layers to build soft sensors,which are applied to the benchmarked Tennessee-Eastman process(TEP)and a real wind farm case.The comparison of modelling results demonstrates that the multiscale feature extraction layers have the following advantages over other methods.First,the multiscale feature extraction layers significantly reduce the number of parameters compared to the other deep neural networks.Second,the multiscale feature extraction layers can powerfully extract dataset characteristics.Finally,the multiscale feature extraction layers with fully considered historical measurements can contain richer useful information and improved representation compared to traditional data-driven models. 展开更多
关键词 MULTI-SCALE feature extractor deep neural network(DNN) multirate sampled industrial processes prediction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部