Due to the advancements in information technologies,massive quantity of data is being produced by social media,smartphones,and sensor devices.The investigation of data stream by the use of machine learning(ML)approach...Due to the advancements in information technologies,massive quantity of data is being produced by social media,smartphones,and sensor devices.The investigation of data stream by the use of machine learning(ML)approaches to address regression,prediction,and classification problems have received consid-erable interest.At the same time,the detection of anomalies or outliers and feature selection(FS)processes becomes important.This study develops an outlier detec-tion with feature selection technique for streaming data classification,named ODFST-SDC technique.Initially,streaming data is pre-processed in two ways namely categorical encoding and null value removal.In addition,Local Correla-tion Integral(LOCI)is used which is significant in the detection and removal of outliers.Besides,red deer algorithm(RDA)based FS approach is employed to derive an optimal subset of features.Finally,kernel extreme learning machine(KELM)classifier is used for streaming data classification.The design of LOCI based outlier detection and RDA based FS shows the novelty of the work.In order to assess the classification outcomes of the ODFST-SDC technique,a series of simulations were performed using three benchmark datasets.The experimental results reported the promising outcomes of the ODFST-SDC technique over the recent approaches.展开更多
In healthcare sector,image classification is one of the crucial problems that impact the quality output from image processing domain.The purpose of image classification is to categorize different healthcare images under...In healthcare sector,image classification is one of the crucial problems that impact the quality output from image processing domain.The purpose of image classification is to categorize different healthcare images under various class labels which in turn helps in the detection and management of diseases.Magnetic Resonance Imaging(MRI)is one of the effective non-invasive strate-gies that generate a huge and distinct number of tissue contrasts in every imaging modality.This technique is commonly utilized by healthcare professionals for Brain Tumor(BT)diagnosis.With recent advancements in Machine Learning(ML)and Deep Learning(DL)models,it is possible to detect the tumor from images automatically,using a computer-aided design.The current study focuses on the design of automated Deep Learning-based BT Detection and Classification model using MRI images(DLBTDC-MRI).The proposed DLBTDC-MRI techni-que aims at detecting and classifying different stages of BT.The proposed DLBTDC-MRI technique involves medianfiltering technique to remove the noise and enhance the quality of MRI images.Besides,morphological operations-based image segmentation approach is also applied to determine the BT-affected regions in brain MRI image.Moreover,a fusion of handcrafted deep features using VGGNet is utilized to derive a valuable set of feature vectors.Finally,Artificial Fish Swarm Optimization(AFSO)with Artificial Neural Network(ANN)model is utilized as a classifier to decide the presence of BT.In order to assess the enhanced BT classification performance of the proposed model,a comprehensive set of simulations was performed on benchmark dataset and the results were vali-dated under several measures.展开更多
Nowadays, an increasing number of web applications require identification registration. However, the behavior of website registration has not ever been thoroughly studied. We use the database provided by the Chinese S...Nowadays, an increasing number of web applications require identification registration. However, the behavior of website registration has not ever been thoroughly studied. We use the database provided by the Chinese Software Develop Net (CSDN) to provide a complete perspective on this research point. We concentrate on the following three aspects: complexity, correlation, and preference. From these analyses, we draw the following conclusions: firstly, a considerable number of users have not realized the importance of identification and are using very simple identifications that can be attacked very easily. Secondly, there is a strong complexity correlation among the three parts of identification. Thirdly, the top three passwords that users like are 123456789, 12345678 and 11111111, and the top three email providers that they prefer are NETEASE, qq and sina. Further, we provide some suggestions to improve the quality of user passwords.展开更多
Cybercrime has increased considerably in recent times by creating new methods of stealing,changing,and destroying data in daily lives.Portable Docu-ment Format(PDF)has been traditionally utilized as a popular way of s...Cybercrime has increased considerably in recent times by creating new methods of stealing,changing,and destroying data in daily lives.Portable Docu-ment Format(PDF)has been traditionally utilized as a popular way of spreading malware.The recent advances of machine learning(ML)and deep learning(DL)models are utilized to detect and classify malware.With this motivation,this study focuses on the design of mayfly optimization with a deep belief network for PDF malware detection and classification(MFODBN-MDC)technique.The major intention of the MFODBN-MDC technique is for identifying and classify-ing the presence of malware exist in the PDFs.The proposed MFODBN-MDC method derives a new MFO algorithm for the optimal selection of feature subsets.In addition,Adamax optimizer with the DBN model is used for PDF malware detection and classification.The design of the MFO algorithm to select features and Adamax based hyperparameter tuning for PDF malware detection and classi-fication demonstrates the novelty of the work.For demonstrating the improved outcomes of the MFODBN-MDC model,a wide range of simulations are exe-cuted,and the results are assessed in various aspects.The comparison study high-lighted the enhanced outcomes of the MFODBN-MDC model over the existing techniques with maximum precision,recall,and F1 score of 97.42%,97.33%,and 97.33%,respectively.展开更多
Big data analytics is a popular research topic due to its applicability in various real time applications.The recent advent of machine learning and deep learning models can be applied to analyze big data with better p...Big data analytics is a popular research topic due to its applicability in various real time applications.The recent advent of machine learning and deep learning models can be applied to analyze big data with better performance.Since big data involves numerous features and necessitates high computational time,feature selection methodologies using metaheuristic optimization algorithms can be adopted to choose optimum set of features and thereby improves the overall classification performance.This study proposes a new sigmoid butterfly optimization method with an optimum gated recurrent unit(SBOA-OGRU)model for big data classification in Apache Spark.The SBOA-OGRU technique involves the design of SBOA based feature selection technique to choose an optimum subset of features.In addition,OGRU based classification model is employed to classify the big data into appropriate classes.Besides,the hyperparameter tuning of the GRU model takes place using Adam optimizer.Furthermore,the Apache Spark platform is applied for processing big data in an effective way.In order to ensure the betterment of the SBOA-OGRU technique,a wide range of experiments were performed and the experimental results highlighted the supremacy of the SBOA-OGRU technique.展开更多
The integration of the Internet of Things(IoT)and cloud computing is the most popular growing technology in the IT world.IoT integrated cloud com-puting technology can be used in smart cities,health care,smart homes,e...The integration of the Internet of Things(IoT)and cloud computing is the most popular growing technology in the IT world.IoT integrated cloud com-puting technology can be used in smart cities,health care,smart homes,environ-mental monitoring,etc.In recent days,IoT integrated cloud can be used in the health care system for remote patient care,emergency care,disease prediction,pharmacy management,etc.but,still,security of patient data and disease predic-tion accuracy is a major concern.Numerous machine learning approaches were used for effective early disease prediction.However,machine learning takes more time and less performance while classification.In this research work,the Attribute based Searchable Honey Encryption with Functional Neural Network(ABSHE-FNN)framework is proposed to analyze the disease and provide stronger security in IoT-cloud healthcare data.In this work,the Cardiovascular Disease and Pima Indians diabetes dataset are used for heart and diabetic disease classification.Initi-ally,means-mode normalization removes the noise and normalizes the IoT data,which helps to enhance the quality of data.Rectified Linear Unit(RLU)was applied to adjust the feature weight to reduce the training cost and error classifi-cation.This proposed ABSHE-FNN technique provides better security and achieves 92.79%disease classification accuracy compared to existing techniques.展开更多
In today’s growing modern world environment,as human food activities are changing,it is affecting human health,thus leading to diseases like cancer.Cancer is a complex disease with many subtypes that affect human hea...In today’s growing modern world environment,as human food activities are changing,it is affecting human health,thus leading to diseases like cancer.Cancer is a complex disease with many subtypes that affect human health without premature treatment and cause death.So the analysis of early diagnosis and prognosis of cancer studies can improve clinical management by analyzing various features of observa-tion,which has become necessary to classify the type in cancer research.The research needs importance to organize the risk of the cancer patients based on data analysis to predict the result of premature treatment.This paper introduces a Maximal Region-Based Candidate Feature Selection(MRCFS)for early risk diagnosing using Soft-Max Feed Forward Neural Classification(SMF2NC)to solve the above pro-blem.The predictive model is based on a different relational feature learning model,which is possessed to candidate selection to reduce the dimensionality.The redundant features are processed marginal weight rates for observing similar features’variants and the absolute value.Softmax neural hidden layers are trained using the Sigmoid Activation Function(SAF)to create the logical condition for feed-forward layers.Further,the maximal features are introduced to invite a deep neural network con-structed on the Feed Forward Recurrent Neural Network(FFRNN).The classifier produces higher classification accuracy than the previous methods and observes the cancer detection,which is recommended for early diagnosis.展开更多
Word Sense Disambiguation has been a trending topic of research in Natural Language Processing and Machine Learning.Mining core features and performing the text classification still exist as a challenging task.Here the...Word Sense Disambiguation has been a trending topic of research in Natural Language Processing and Machine Learning.Mining core features and performing the text classification still exist as a challenging task.Here the features of the context such as neighboring words like adjective provide the evidence for classification using machine learning approach.This paper presented the text document classification that has wide applications in information retrieval,which uses movie review datasets.Here the document indexing based on controlled vocabulary,adjective,word sense disambiguation,generating hierarchical cate-gorization of web pages,spam detection,topic labeling,web search,document summarization,etc.Here the kernel support vector machine learning algorithm helps to classify the text and feature extract is performed by cuckoo search opti-mization.Positive review and negative review of movie dataset is presented to get the better classification accuracy.Experimental results focused with context mining,feature analysis and classification.By comparing with the previous work,proposed work designed to achieve the efficient results.Overall design is per-formed with MATLAB 2020a tool.展开更多
文摘Due to the advancements in information technologies,massive quantity of data is being produced by social media,smartphones,and sensor devices.The investigation of data stream by the use of machine learning(ML)approaches to address regression,prediction,and classification problems have received consid-erable interest.At the same time,the detection of anomalies or outliers and feature selection(FS)processes becomes important.This study develops an outlier detec-tion with feature selection technique for streaming data classification,named ODFST-SDC technique.Initially,streaming data is pre-processed in two ways namely categorical encoding and null value removal.In addition,Local Correla-tion Integral(LOCI)is used which is significant in the detection and removal of outliers.Besides,red deer algorithm(RDA)based FS approach is employed to derive an optimal subset of features.Finally,kernel extreme learning machine(KELM)classifier is used for streaming data classification.The design of LOCI based outlier detection and RDA based FS shows the novelty of the work.In order to assess the classification outcomes of the ODFST-SDC technique,a series of simulations were performed using three benchmark datasets.The experimental results reported the promising outcomes of the ODFST-SDC technique over the recent approaches.
基金supported through the Annual Funding track by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Project No.AN000684].
文摘In healthcare sector,image classification is one of the crucial problems that impact the quality output from image processing domain.The purpose of image classification is to categorize different healthcare images under various class labels which in turn helps in the detection and management of diseases.Magnetic Resonance Imaging(MRI)is one of the effective non-invasive strate-gies that generate a huge and distinct number of tissue contrasts in every imaging modality.This technique is commonly utilized by healthcare professionals for Brain Tumor(BT)diagnosis.With recent advancements in Machine Learning(ML)and Deep Learning(DL)models,it is possible to detect the tumor from images automatically,using a computer-aided design.The current study focuses on the design of automated Deep Learning-based BT Detection and Classification model using MRI images(DLBTDC-MRI).The proposed DLBTDC-MRI techni-que aims at detecting and classifying different stages of BT.The proposed DLBTDC-MRI technique involves medianfiltering technique to remove the noise and enhance the quality of MRI images.Besides,morphological operations-based image segmentation approach is also applied to determine the BT-affected regions in brain MRI image.Moreover,a fusion of handcrafted deep features using VGGNet is utilized to derive a valuable set of feature vectors.Finally,Artificial Fish Swarm Optimization(AFSO)with Artificial Neural Network(ANN)model is utilized as a classifier to decide the presence of BT.In order to assess the enhanced BT classification performance of the proposed model,a comprehensive set of simulations was performed on benchmark dataset and the results were vali-dated under several measures.
基金supported by the Foundation for Key Program of Ministry of Education, China under Grant No.311007National Science Foundation Project of China under Grants No. 61202079, No.61170225, No.61271199+1 种基金the Fundamental Research Funds for the Central Universities under Grant No.FRF-TP-09-015Athe Fundamental Research Funds in Beijing Jiaotong University under Grant No.W11JB00630
文摘Nowadays, an increasing number of web applications require identification registration. However, the behavior of website registration has not ever been thoroughly studied. We use the database provided by the Chinese Software Develop Net (CSDN) to provide a complete perspective on this research point. We concentrate on the following three aspects: complexity, correlation, and preference. From these analyses, we draw the following conclusions: firstly, a considerable number of users have not realized the importance of identification and are using very simple identifications that can be attacked very easily. Secondly, there is a strong complexity correlation among the three parts of identification. Thirdly, the top three passwords that users like are 123456789, 12345678 and 11111111, and the top three email providers that they prefer are NETEASE, qq and sina. Further, we provide some suggestions to improve the quality of user passwords.
文摘Cybercrime has increased considerably in recent times by creating new methods of stealing,changing,and destroying data in daily lives.Portable Docu-ment Format(PDF)has been traditionally utilized as a popular way of spreading malware.The recent advances of machine learning(ML)and deep learning(DL)models are utilized to detect and classify malware.With this motivation,this study focuses on the design of mayfly optimization with a deep belief network for PDF malware detection and classification(MFODBN-MDC)technique.The major intention of the MFODBN-MDC technique is for identifying and classify-ing the presence of malware exist in the PDFs.The proposed MFODBN-MDC method derives a new MFO algorithm for the optimal selection of feature subsets.In addition,Adamax optimizer with the DBN model is used for PDF malware detection and classification.The design of the MFO algorithm to select features and Adamax based hyperparameter tuning for PDF malware detection and classi-fication demonstrates the novelty of the work.For demonstrating the improved outcomes of the MFODBN-MDC model,a wide range of simulations are exe-cuted,and the results are assessed in various aspects.The comparison study high-lighted the enhanced outcomes of the MFODBN-MDC model over the existing techniques with maximum precision,recall,and F1 score of 97.42%,97.33%,and 97.33%,respectively.
文摘Big data analytics is a popular research topic due to its applicability in various real time applications.The recent advent of machine learning and deep learning models can be applied to analyze big data with better performance.Since big data involves numerous features and necessitates high computational time,feature selection methodologies using metaheuristic optimization algorithms can be adopted to choose optimum set of features and thereby improves the overall classification performance.This study proposes a new sigmoid butterfly optimization method with an optimum gated recurrent unit(SBOA-OGRU)model for big data classification in Apache Spark.The SBOA-OGRU technique involves the design of SBOA based feature selection technique to choose an optimum subset of features.In addition,OGRU based classification model is employed to classify the big data into appropriate classes.Besides,the hyperparameter tuning of the GRU model takes place using Adam optimizer.Furthermore,the Apache Spark platform is applied for processing big data in an effective way.In order to ensure the betterment of the SBOA-OGRU technique,a wide range of experiments were performed and the experimental results highlighted the supremacy of the SBOA-OGRU technique.
文摘The integration of the Internet of Things(IoT)and cloud computing is the most popular growing technology in the IT world.IoT integrated cloud com-puting technology can be used in smart cities,health care,smart homes,environ-mental monitoring,etc.In recent days,IoT integrated cloud can be used in the health care system for remote patient care,emergency care,disease prediction,pharmacy management,etc.but,still,security of patient data and disease predic-tion accuracy is a major concern.Numerous machine learning approaches were used for effective early disease prediction.However,machine learning takes more time and less performance while classification.In this research work,the Attribute based Searchable Honey Encryption with Functional Neural Network(ABSHE-FNN)framework is proposed to analyze the disease and provide stronger security in IoT-cloud healthcare data.In this work,the Cardiovascular Disease and Pima Indians diabetes dataset are used for heart and diabetic disease classification.Initi-ally,means-mode normalization removes the noise and normalizes the IoT data,which helps to enhance the quality of data.Rectified Linear Unit(RLU)was applied to adjust the feature weight to reduce the training cost and error classifi-cation.This proposed ABSHE-FNN technique provides better security and achieves 92.79%disease classification accuracy compared to existing techniques.
文摘In today’s growing modern world environment,as human food activities are changing,it is affecting human health,thus leading to diseases like cancer.Cancer is a complex disease with many subtypes that affect human health without premature treatment and cause death.So the analysis of early diagnosis and prognosis of cancer studies can improve clinical management by analyzing various features of observa-tion,which has become necessary to classify the type in cancer research.The research needs importance to organize the risk of the cancer patients based on data analysis to predict the result of premature treatment.This paper introduces a Maximal Region-Based Candidate Feature Selection(MRCFS)for early risk diagnosing using Soft-Max Feed Forward Neural Classification(SMF2NC)to solve the above pro-blem.The predictive model is based on a different relational feature learning model,which is possessed to candidate selection to reduce the dimensionality.The redundant features are processed marginal weight rates for observing similar features’variants and the absolute value.Softmax neural hidden layers are trained using the Sigmoid Activation Function(SAF)to create the logical condition for feed-forward layers.Further,the maximal features are introduced to invite a deep neural network con-structed on the Feed Forward Recurrent Neural Network(FFRNN).The classifier produces higher classification accuracy than the previous methods and observes the cancer detection,which is recommended for early diagnosis.
文摘Word Sense Disambiguation has been a trending topic of research in Natural Language Processing and Machine Learning.Mining core features and performing the text classification still exist as a challenging task.Here the features of the context such as neighboring words like adjective provide the evidence for classification using machine learning approach.This paper presented the text document classification that has wide applications in information retrieval,which uses movie review datasets.Here the document indexing based on controlled vocabulary,adjective,word sense disambiguation,generating hierarchical cate-gorization of web pages,spam detection,topic labeling,web search,document summarization,etc.Here the kernel support vector machine learning algorithm helps to classify the text and feature extract is performed by cuckoo search opti-mization.Positive review and negative review of movie dataset is presented to get the better classification accuracy.Experimental results focused with context mining,feature analysis and classification.By comparing with the previous work,proposed work designed to achieve the efficient results.Overall design is per-formed with MATLAB 2020a tool.