Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of mu...Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world.展开更多
Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared ima...Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared images for video surveillance,which poses a challenge in exploring cross-modal shared information accurately and efficiently.Therefore,multi-granularity feature learning methods have been applied in VI-ReID to extract potential multi-granularity semantic information related to pedestrian body structure attributes.However,existing research mainly uses traditional dual-stream fusion networks and overlooks the core of cross-modal learning networks,the fusion module.This paper introduces a novel network called the Augmented Deep Multi-Granularity Pose-Aware Feature Fusion Network(ADMPFF-Net),incorporating the Multi-Granularity Pose-Aware Feature Fusion(MPFF)module to generate discriminative representations.MPFF efficiently explores and learns global and local features with multi-level semantic information by inserting disentangling and duplicating blocks into the fusion module of the backbone network.ADMPFF-Net also provides a new perspective for designing multi-granularity learning networks.By incorporating the multi-granularity feature disentanglement(mGFD)and posture information segmentation(pIS)strategies,it extracts more representative features concerning body structure information.The Local Information Enhancement(LIE)module augments high-performance features in VI-ReID,and the multi-granularity joint loss supervises model training for objective feature learning.Experimental results on two public datasets show that ADMPFF-Net efficiently constructs pedestrian feature representations and enhances the accuracy of VI-ReID.展开更多
Maintaining a steady power supply requires accurate forecasting of solar irradiance,since clean energy resources do not provide steady power.The existing forecasting studies have examined the limited effects of weathe...Maintaining a steady power supply requires accurate forecasting of solar irradiance,since clean energy resources do not provide steady power.The existing forecasting studies have examined the limited effects of weather conditions on solar radiation such as temperature and precipitation utilizing convolutional neural network(CNN),but no comprehensive study has been conducted on concentrations of air pollutants along with weather conditions.This paper proposes a hybrid approach based on deep learning,expanding the feature set by adding new air pollution concentrations,and ranking these features to select and reduce their size to improve efficiency.In order to improve the accuracy of feature selection,a maximum-dependency and minimum-redundancy(mRMR)criterion is applied to the constructed feature space to identify and rank the features.The combination of air pollution data with weather conditions data has enabled the prediction of solar irradiance with a higher accuracy.An evaluation of the proposed approach is conducted in Istanbul over 12 months for 43791 discrete times,with the main purpose of analyzing air data,including particular matter(PM10 and PM25),carbon monoxide(CO),nitric oxide(NOX),nitrogen dioxide(NO_(2)),ozone(O₃),sulfur dioxide(SO_(2))using a CNN,a long short-term memory network(LSTM),and MRMR feature extraction.Compared with the benchmark models with root mean square error(RMSE)results of 76.2,60.3,41.3,32.4,there is a significant improvement with the RMSE result of 5.536.This hybrid model presented here offers high prediction accuracy,a wider feature set,and a novel approach based on air concentrations combined with weather conditions for solar irradiance prediction.展开更多
An empirical test on long memory between price and trading volume of China metals futures market was given with MF-DCCA method. The empirical results show that long memory feature with a certain period exists in price...An empirical test on long memory between price and trading volume of China metals futures market was given with MF-DCCA method. The empirical results show that long memory feature with a certain period exists in price-volume correlation and a fittther proof was given by analyzing the source of multifractal feature. The empirical results suggest that it is of important practical significance to bring the fractal market theory and other nonlinear theory into the analysis and explanation of the behavior in metal futures market.展开更多
Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research ...Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty,the curse of dimensionality,overfitting and non-linearity issues.The curse of dimensionality and overfitting issues are handled by using Boruta feature selec-tion.The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory(Bi-LSTM).In this paper,Bi-LSTM with Boruta feature selection named BFS-Bi-LSTM is proposed to improve the performance of wind speed forecasting.The model identifies relevant features for wind speed forecasting from the meteorological features using Boruta wrapper feature selection(BFS).Followed by Bi-LSTM predicts the wind speed by considering the wind speed from the past and future time steps.The proposed BFS-Bi-LSTM model is compared against Multilayer perceptron(MLP),MLP with Boruta(BFS-MLP),Long Short Term Memory(LSTM),LSTM with Boruta(BFS-LSTM)and Bi-LSTM in terms of Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Square Error(MSE)and R2.The BFS-Bi-LSTM surpassed other models by producing RMSE of 0.784,MAE of 0.530,MSE of 0.615 and R2 of 0.8766.The experimental result shows that the BFS-Bi-LSTM produced better forecasting results compared to others.展开更多
Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics,with predictive accuracy being a central motivation for employing neural networks.However,the pattern recognit...Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics,with predictive accuracy being a central motivation for employing neural networks.However,the pattern recognition central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid dynamics.In this paper,a single-layer convolutional neural network(CNN)was trained to recognize three qualitatively different subsonic buffet flows(periodic,quasi-periodic and chaotic)over a high-incidence airfoil,and a near-perfect accuracy was obtained with only a small training dataset.The convolutional kernels and corresponding feature maps,developed by the model with no temporal information provided,identified large-scale coherent structures in agreement with those known to be associated with buffet flows.Sensitivity to hyperparameters including network architecture and convolutional kernel size was also explored.The coherent structures identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils over a wide range of Reynolds numbers.展开更多
Personality distinguishes individuals’ patterns of feeling, thinking,and behaving. Predicting personality from small video series is an excitingresearch area in computer vision. The majority of the existing research ...Personality distinguishes individuals’ patterns of feeling, thinking,and behaving. Predicting personality from small video series is an excitingresearch area in computer vision. The majority of the existing research concludespreliminary results to get immense knowledge from visual and Audio(sound) modality. To overcome the deficiency, we proposed the Deep BimodalFusion (DBF) approach to predict five traits of personality-agreeableness,extraversion, openness, conscientiousness and neuroticism. In the proposedframework, regarding visual modality, the modified convolution neural networks(CNN), more specifically Descriptor Aggregator Model (DAN) areused to attain significant visual modality. The proposed model extracts audiorepresentations for greater efficiency to construct the long short-termmemory(LSTM) for the audio modality. Moreover, employing modality-based neuralnetworks allows this framework to independently determine the traits beforecombining them with weighted fusion to achieve a conclusive prediction of thegiven traits. The proposed approach attains the optimal mean accuracy score,which is 0.9183. It is achieved based on the average of five personality traitsand is thus better than previously proposed frameworks.展开更多
In the complex countermeasure environment,the pulse description words(PDWs)of the same type of multi-function radar emitters are similar in multiple dimensions.Therefore,it is difficult for conventional methods to dei...In the complex countermeasure environment,the pulse description words(PDWs)of the same type of multi-function radar emitters are similar in multiple dimensions.Therefore,it is difficult for conventional methods to deinterleave such emitters.In order to solve this problem,a pulse deinterleaving method based on implicit features is proposed in this paper.The proposed method introduces long short-term memory(LSTM)neural networks and statistical analysis to mine new features from similar PDW features,that is,the variation law(implicit features)of pulse sequences of different radiation sources over time.The multi-function radar emitter is deinterleaved based on the pulse sequence variation law.Statistical results show that the proposed method not only achieves satisfactory performance,but also has good robustness.展开更多
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan....A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively.展开更多
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh...Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection.展开更多
A new method to extract person-independent expression feature based on higher-order singular value decomposition (HOSVD) is proposed for facial expression recognition. Based on the assumption that similar persons ha...A new method to extract person-independent expression feature based on higher-order singular value decomposition (HOSVD) is proposed for facial expression recognition. Based on the assumption that similar persons have similar facial expression appearance and shape, the person-similarity weighted expression feature is proposed to estimate the expression feature of test persons. As a result, the estimated expression feature can reduce the influence of individuals caused by insufficient training data, and hence become less person-dependent. The proposed method is tested on Cohn-Kanade facial expression database and Japanese female facial expression (JAFFE) database. Person-independent experimental results show the superiority of the proposed method over the existing methods.展开更多
This paper proposes that conscious, explicit memory, implicit memory, and instincts constitute the four-component mind for the mental origins of psychotherapy and personality. The mental origin of the personality theo...This paper proposes that conscious, explicit memory, implicit memory, and instincts constitute the four-component mind for the mental origins of psychotherapy and personality. The mental origin of the personality theories including the big five personality traits, the MBTI, the social style model, the Hofstede’s cultural dimensions, and the Schwartz’s theory of basic human values is from the unconscious instincts (the six social and three mental protective instincts). The three mental protective instincts that contain the three instinctive countermeasures against the three adversities are hyperactivity countermeasure against danger, phobia countermeasure against unfamiliarity-uncertainty, and comforter countermeasure against hardship. Each countermeasure is regulated (moderated) by a regulator to minimize overactive countermeasure as physical regulator to minimize overactive immunity in physical immune system. Severe adversities and ineffective regulators over-activate protective countermeasures to generate overactive countermeasures as overactive hyperactivity, overactive phobia, and overactive comforter, corresponding to dramatic-impulsive cluster, anxious-fearful cluster, and odd-eccentric cluster, respectively for personality-mental disorders in the DSM-5. Such disordered behavioral habits are stored in unconscious implicit memory which generates disordered thought patterns in pre-conscious explicit memory. For psychotherapy, cognitive behavioral therapy (CBT) normalizes disordered thought patterns in explicit memory to normalize disordered behavioral habit memory in implicit memory through the repetitive training in normalizing thought patterns, feelings, and behaviors. For psychotherapy, mindfulness meditation strengthens conscious attention (working memory) to normalize disordered behavioral habit memory through the repetitive training in directing conscious attention to the breath or body. In conclusion, the mental origin of personality-mental disorders is from the overactive mental protective instincts. The mental origin of psychotherapy is from therapeutic implicit memory and conscious attention for CBT and mindfulness meditation, respectively. The mental origin of personality is from the unconscious instincts. Therefore, the four-component mind of conscious, explicit memory, implicit memory, and instincts explains the origin, the storage, and the normalization of personality-mental disorders for psychotherapy, and provides the mental origin of personality.展开更多
The Coronavirus Disease 2019(COVID-19)pandemic poses the worldwide challenges surpassing the boundaries of country,religion,race,and economy.The current benchmark method for the detection of COVID-19 is the reverse tr...The Coronavirus Disease 2019(COVID-19)pandemic poses the worldwide challenges surpassing the boundaries of country,religion,race,and economy.The current benchmark method for the detection of COVID-19 is the reverse transcription polymerase chain reaction(RT-PCR)testing.Nevertheless,this testing method is accurate enough for the diagnosis of COVID-19.However,it is time-consuming,expensive,expert-dependent,and violates social distancing.In this paper,this research proposed an effective multimodality-based and feature fusion-based(MMFF)COVID-19 detection technique through deep neural networks.In multi-modality,we have utilized the cough samples,breathe samples and sound samples of healthy as well as COVID-19 patients from publicly available COSWARA dataset.Extensive set of experimental analyses were performed to evaluate the performance of our proposed approach.Several useful features were extracted from the aforementioned modalities that were then fed as an input to long short-term memory recurrent neural network algorithms for the classification purpose.Extensive set of experimental analyses were performed to evaluate the performance of our proposed approach.The experimental results showed that our proposed approach outperformed compared to four baseline approaches published recently.We believe that our proposed technique will assists potential users to diagnose the COVID-19 without the intervention of any expert in minimum amount of time.展开更多
Person re-identification(Re-ID) is integral to intelligent monitoring systems.However,due to the variability in viewing angles and illumination,it is easy to cause visual ambiguities,affecting the accuracy of person r...Person re-identification(Re-ID) is integral to intelligent monitoring systems.However,due to the variability in viewing angles and illumination,it is easy to cause visual ambiguities,affecting the accuracy of person re-identification.An approach for person re-identification based on feature mapping space and sample determination is proposed.At first,a weight fusion model,including mean and maximum value of the horizontal occurrence in local features,is introduced into the mapping space to optimize local features.Then,the Gaussian distribution model with hierarchical mean and covariance of pixel features is introduced to enhance feature expression.Finally,considering the influence of the size of samples on metric learning performance,the appropriate metric learning is selected by sample determination method to further improve the performance of person re-identification.Experimental results on the VIPeR,PRID450 S and CUHK01 datasets demonstrate that the proposed method is better than the traditional methods.展开更多
In this study,the hourly directions of eight banking stocks in Borsa Istanbul were predicted using linear-based,deep-learning(LSTM)and ensemble learning(Light-GBM)models.These models were trained with four different f...In this study,the hourly directions of eight banking stocks in Borsa Istanbul were predicted using linear-based,deep-learning(LSTM)and ensemble learning(Light-GBM)models.These models were trained with four different feature sets and their performances were evaluated in terms of accuracy and F-measure metrics.While the first experiments directly used the own stock features as the model inputs,the second experiments utilized reduced stock features through Variational AutoEncoders(VAE).In the last experiments,in order to grasp the effects of the other banking stocks on individual stock performance,the features belonging to other stocks were also given as inputs to our models.While combining other stock features was done for both own(named as allstock_own)and VAE-reduced(named as allstock_VAE)stock features,the expanded dimensions of the feature sets were reduced by Recursive Feature Elimination.As the highest success rate increased up to 0.685 with allstock_own and LSTM with attention model,the combination of allstock_VAE and LSTM with the attention model obtained an accuracy rate of 0.675.Although the classification results achieved with both feature types was close,allstock_VAE achieved these results using nearly 16.67%less features compared to allstock_own.When all experimental results were examined,it was found out that the models trained with allstock_own and allstock_VAE achieved higher accuracy rates than those using individual stock features.It was also concluded that the results obtained with the VAE-reduced stock features were similar to those obtained by own stock features.展开更多
Infectious keratitis is the most common condition of corneal diseases in which a pathogen grows in the cornea leading to inflammation and destruction of the corneal tissues.Infectious keratitis is a medical emergency ...Infectious keratitis is the most common condition of corneal diseases in which a pathogen grows in the cornea leading to inflammation and destruction of the corneal tissues.Infectious keratitis is a medical emergency for which a rapid and accurate diagnosis is needed to ensure prompt and precise treatment to halt the disease progression and to limit the extent of corneal damage;otherwise,it may develop a sight-threatening and even eye-globe-threatening condition.In this paper,we propose a sequentiallevel deep model to effectively discriminate infectious corneal disease via the classification of clinical images.In this approach,we devise an appropriate mechanism to preserve the spatial structures of clinical images and disentangle the informative features for clinical image classification of infectious keratitis.In a comparison,the performance of the proposed sequential-level deep model achieved 80%diagnostic accuracy,far better than the 49.27%±11.5%diagnostic accuracy achieved by 421 ophthalmologists over 120 test images.展开更多
In order to explore the structural features of neural networks and the ap-proaches to local interconnection,the geometrical structural information is introduced tothe Hopfield neural network model which is applied to ...In order to explore the structural features of neural networks and the ap-proaches to local interconnection,the geometrical structural information is introduced tothe Hopfield neural network model which is applied to associative memory.The dynamicsof the recalling is studied theoretically and cxpcrimcntally.The rcsults show that the geo-metrical structural information is helpless to the associative memory of monolayeredneural networks,furthermore,it makes the error probability increased.If the geometricalstructural information of the stored patterns is necessary to be introduced,somc new ap-proaches have to be explored.展开更多
Personality Disorders(PDs)and Anxiety Disorders(ADs)are common mental disorders.PDs are often more or less related to anxiety and ADs are affected by Personality Functioning(PF).To clarify the pathology of both ADs an...Personality Disorders(PDs)and Anxiety Disorders(ADs)are common mental disorders.PDs are often more or less related to anxiety and ADs are affected by Personality Functioning(PF).To clarify the pathology of both ADs and PDs,along with their similarities and differences,the literature review by paired keywords search on NCBI PubMed and subsequent analysis are used.The findings support that abnormal stressors can damage the Hypothalamus-Pituitary-Adrenal(HPA)axis time by time throughout life through the epigenetic pathway,lowering down the ability of the stress system to deal with stressors.Biological basis,like the genetic issue,for PDs,is important but after-born experience also matters a lot.Adjoint stressful long-term memory may largely affect normal personality formation,contributing to some kinds of PDs.It seems that early exposure to these stressors influences PDs more,compared to ADs.More researches are needed to explore the effect on ADs from later life stress.This study partially explained the process of ADs and PDs,linked them by abnormal stressors,and emphasized the importance of focusing on the effect of stressful long-term memory formation,which is psychological,and the HPA axis disability,which is biological,on patients having these diseases,reminds psychiatrist to treat disease at the source,to lower down the potential risk of getting PDs in patients who are diagnosed with ADs,to prevent arouse of ADs in patients who are diagnosed with PDs and to combine biological treatment with psychological therapies.展开更多
文摘Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world.
基金supported in part by the National Natural Science Foundation of China under Grant 62177029,62307025in part by the Startup Foundation for Introducing Talent of Nanjing University of Posts and Communications under Grant NY221041in part by the General Project of The Natural Science Foundation of Jiangsu Higher Education Institution of China 22KJB520025,23KJD580.
文摘Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared images for video surveillance,which poses a challenge in exploring cross-modal shared information accurately and efficiently.Therefore,multi-granularity feature learning methods have been applied in VI-ReID to extract potential multi-granularity semantic information related to pedestrian body structure attributes.However,existing research mainly uses traditional dual-stream fusion networks and overlooks the core of cross-modal learning networks,the fusion module.This paper introduces a novel network called the Augmented Deep Multi-Granularity Pose-Aware Feature Fusion Network(ADMPFF-Net),incorporating the Multi-Granularity Pose-Aware Feature Fusion(MPFF)module to generate discriminative representations.MPFF efficiently explores and learns global and local features with multi-level semantic information by inserting disentangling and duplicating blocks into the fusion module of the backbone network.ADMPFF-Net also provides a new perspective for designing multi-granularity learning networks.By incorporating the multi-granularity feature disentanglement(mGFD)and posture information segmentation(pIS)strategies,it extracts more representative features concerning body structure information.The Local Information Enhancement(LIE)module augments high-performance features in VI-ReID,and the multi-granularity joint loss supervises model training for objective feature learning.Experimental results on two public datasets show that ADMPFF-Net efficiently constructs pedestrian feature representations and enhances the accuracy of VI-ReID.
文摘Maintaining a steady power supply requires accurate forecasting of solar irradiance,since clean energy resources do not provide steady power.The existing forecasting studies have examined the limited effects of weather conditions on solar radiation such as temperature and precipitation utilizing convolutional neural network(CNN),but no comprehensive study has been conducted on concentrations of air pollutants along with weather conditions.This paper proposes a hybrid approach based on deep learning,expanding the feature set by adding new air pollution concentrations,and ranking these features to select and reduce their size to improve efficiency.In order to improve the accuracy of feature selection,a maximum-dependency and minimum-redundancy(mRMR)criterion is applied to the constructed feature space to identify and rank the features.The combination of air pollution data with weather conditions data has enabled the prediction of solar irradiance with a higher accuracy.An evaluation of the proposed approach is conducted in Istanbul over 12 months for 43791 discrete times,with the main purpose of analyzing air data,including particular matter(PM10 and PM25),carbon monoxide(CO),nitric oxide(NOX),nitrogen dioxide(NO_(2)),ozone(O₃),sulfur dioxide(SO_(2))using a CNN,a long short-term memory network(LSTM),and MRMR feature extraction.Compared with the benchmark models with root mean square error(RMSE)results of 76.2,60.3,41.3,32.4,there is a significant improvement with the RMSE result of 5.536.This hybrid model presented here offers high prediction accuracy,a wider feature set,and a novel approach based on air concentrations combined with weather conditions for solar irradiance prediction.
基金Project(13&ZD024)supported by the Major Program of the National Social Science Fund of ChinaProject(71073177)supported by the National Natural Science Foundation of China+3 种基金Project(CX2012B107)supported by the Graduate Student Innovation Project of Hunan Province,ChinaProject(13YJAZH149)supported by the Social Science Fund of Ministry of Education of ChinaProject(2011ZK2043)supported by the Key Program of the Soft Science Research Project of Hunan Province,ChinaProject(12JJ4077)supported by Natural Science Foundation of Hunan Province of China
文摘An empirical test on long memory between price and trading volume of China metals futures market was given with MF-DCCA method. The empirical results show that long memory feature with a certain period exists in price-volume correlation and a fittther proof was given by analyzing the source of multifractal feature. The empirical results suggest that it is of important practical significance to bring the fractal market theory and other nonlinear theory into the analysis and explanation of the behavior in metal futures market.
文摘Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty,the curse of dimensionality,overfitting and non-linearity issues.The curse of dimensionality and overfitting issues are handled by using Boruta feature selec-tion.The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory(Bi-LSTM).In this paper,Bi-LSTM with Boruta feature selection named BFS-Bi-LSTM is proposed to improve the performance of wind speed forecasting.The model identifies relevant features for wind speed forecasting from the meteorological features using Boruta wrapper feature selection(BFS).Followed by Bi-LSTM predicts the wind speed by considering the wind speed from the past and future time steps.The proposed BFS-Bi-LSTM model is compared against Multilayer perceptron(MLP),MLP with Boruta(BFS-MLP),Long Short Term Memory(LSTM),LSTM with Boruta(BFS-LSTM)and Bi-LSTM in terms of Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Square Error(MSE)and R2.The BFS-Bi-LSTM surpassed other models by producing RMSE of 0.784,MAE of 0.530,MSE of 0.615 and R2 of 0.8766.The experimental result shows that the BFS-Bi-LSTM produced better forecasting results compared to others.
文摘Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics,with predictive accuracy being a central motivation for employing neural networks.However,the pattern recognition central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid dynamics.In this paper,a single-layer convolutional neural network(CNN)was trained to recognize three qualitatively different subsonic buffet flows(periodic,quasi-periodic and chaotic)over a high-incidence airfoil,and a near-perfect accuracy was obtained with only a small training dataset.The convolutional kernels and corresponding feature maps,developed by the model with no temporal information provided,identified large-scale coherent structures in agreement with those known to be associated with buffet flows.Sensitivity to hyperparameters including network architecture and convolutional kernel size was also explored.The coherent structures identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils over a wide range of Reynolds numbers.
文摘Personality distinguishes individuals’ patterns of feeling, thinking,and behaving. Predicting personality from small video series is an excitingresearch area in computer vision. The majority of the existing research concludespreliminary results to get immense knowledge from visual and Audio(sound) modality. To overcome the deficiency, we proposed the Deep BimodalFusion (DBF) approach to predict five traits of personality-agreeableness,extraversion, openness, conscientiousness and neuroticism. In the proposedframework, regarding visual modality, the modified convolution neural networks(CNN), more specifically Descriptor Aggregator Model (DAN) areused to attain significant visual modality. The proposed model extracts audiorepresentations for greater efficiency to construct the long short-termmemory(LSTM) for the audio modality. Moreover, employing modality-based neuralnetworks allows this framework to independently determine the traits beforecombining them with weighted fusion to achieve a conclusive prediction of thegiven traits. The proposed approach attains the optimal mean accuracy score,which is 0.9183. It is achieved based on the average of five personality traitsand is thus better than previously proposed frameworks.
基金the National Major Research&Development project of China(2018YFE0206500)the National Natural Science Foundation of China(62071140)+1 种基金the Program of China International Scientific and Technological Cooperation(2015DFR10220)the Technology Foundation for Basic Enhancement Plan(2021-JCJQ-JJ-0301).
文摘In the complex countermeasure environment,the pulse description words(PDWs)of the same type of multi-function radar emitters are similar in multiple dimensions.Therefore,it is difficult for conventional methods to deinterleave such emitters.In order to solve this problem,a pulse deinterleaving method based on implicit features is proposed in this paper.The proposed method introduces long short-term memory(LSTM)neural networks and statistical analysis to mine new features from similar PDW features,that is,the variation law(implicit features)of pulse sequences of different radiation sources over time.The multi-function radar emitter is deinterleaved based on the pulse sequence variation law.Statistical results show that the proposed method not only achieves satisfactory performance,but also has good robustness.
基金National Key Research and Development Program of China (Grant No. 2022YFE0102700)National Natural Science Foundation of China (Grant No. 52102420)+2 种基金research project “Safe Da Batt” (03EMF0409A) funded by the German Federal Ministry of Digital and Transport (BMDV)China Postdoctoral Science Foundation (Grant No. 2023T160085)Sichuan Science and Technology Program (Grant No. 2024NSFSC0938)。
文摘A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively.
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through Small Group Research Project under Grant Number RGP1/261/45.
文摘Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection.
基金supported by National Natural Science Foundation of China (6087208460940008)+2 种基金Beijing Training Programming Foundation for the Talents (20081D1600300343)Excellent Young Scholar Research Fund of Beijing Institute of Technology (2007Y0305)Fundamental Research Foundation of Beijing Institute of Technology (20080342005)
文摘A new method to extract person-independent expression feature based on higher-order singular value decomposition (HOSVD) is proposed for facial expression recognition. Based on the assumption that similar persons have similar facial expression appearance and shape, the person-similarity weighted expression feature is proposed to estimate the expression feature of test persons. As a result, the estimated expression feature can reduce the influence of individuals caused by insufficient training data, and hence become less person-dependent. The proposed method is tested on Cohn-Kanade facial expression database and Japanese female facial expression (JAFFE) database. Person-independent experimental results show the superiority of the proposed method over the existing methods.
文摘This paper proposes that conscious, explicit memory, implicit memory, and instincts constitute the four-component mind for the mental origins of psychotherapy and personality. The mental origin of the personality theories including the big five personality traits, the MBTI, the social style model, the Hofstede’s cultural dimensions, and the Schwartz’s theory of basic human values is from the unconscious instincts (the six social and three mental protective instincts). The three mental protective instincts that contain the three instinctive countermeasures against the three adversities are hyperactivity countermeasure against danger, phobia countermeasure against unfamiliarity-uncertainty, and comforter countermeasure against hardship. Each countermeasure is regulated (moderated) by a regulator to minimize overactive countermeasure as physical regulator to minimize overactive immunity in physical immune system. Severe adversities and ineffective regulators over-activate protective countermeasures to generate overactive countermeasures as overactive hyperactivity, overactive phobia, and overactive comforter, corresponding to dramatic-impulsive cluster, anxious-fearful cluster, and odd-eccentric cluster, respectively for personality-mental disorders in the DSM-5. Such disordered behavioral habits are stored in unconscious implicit memory which generates disordered thought patterns in pre-conscious explicit memory. For psychotherapy, cognitive behavioral therapy (CBT) normalizes disordered thought patterns in explicit memory to normalize disordered behavioral habit memory in implicit memory through the repetitive training in normalizing thought patterns, feelings, and behaviors. For psychotherapy, mindfulness meditation strengthens conscious attention (working memory) to normalize disordered behavioral habit memory through the repetitive training in directing conscious attention to the breath or body. In conclusion, the mental origin of personality-mental disorders is from the overactive mental protective instincts. The mental origin of psychotherapy is from therapeutic implicit memory and conscious attention for CBT and mindfulness meditation, respectively. The mental origin of personality is from the unconscious instincts. Therefore, the four-component mind of conscious, explicit memory, implicit memory, and instincts explains the origin, the storage, and the normalization of personality-mental disorders for psychotherapy, and provides the mental origin of personality.
文摘The Coronavirus Disease 2019(COVID-19)pandemic poses the worldwide challenges surpassing the boundaries of country,religion,race,and economy.The current benchmark method for the detection of COVID-19 is the reverse transcription polymerase chain reaction(RT-PCR)testing.Nevertheless,this testing method is accurate enough for the diagnosis of COVID-19.However,it is time-consuming,expensive,expert-dependent,and violates social distancing.In this paper,this research proposed an effective multimodality-based and feature fusion-based(MMFF)COVID-19 detection technique through deep neural networks.In multi-modality,we have utilized the cough samples,breathe samples and sound samples of healthy as well as COVID-19 patients from publicly available COSWARA dataset.Extensive set of experimental analyses were performed to evaluate the performance of our proposed approach.Several useful features were extracted from the aforementioned modalities that were then fed as an input to long short-term memory recurrent neural network algorithms for the classification purpose.Extensive set of experimental analyses were performed to evaluate the performance of our proposed approach.The experimental results showed that our proposed approach outperformed compared to four baseline approaches published recently.We believe that our proposed technique will assists potential users to diagnose the COVID-19 without the intervention of any expert in minimum amount of time.
基金Supported by the National Natural Science Foundation of China (No.61976080)the Science and Technology Key Project of Science and Technology Department of Henan Province (No.212102310298)+1 种基金the Innovation and Quality Improvement Project for Graduate Education of Henan University (No.SYL20010101)the Academic Degress&Graduate Education Reform Project of Henan Province (2021SJLX195Y)。
文摘Person re-identification(Re-ID) is integral to intelligent monitoring systems.However,due to the variability in viewing angles and illumination,it is easy to cause visual ambiguities,affecting the accuracy of person re-identification.An approach for person re-identification based on feature mapping space and sample determination is proposed.At first,a weight fusion model,including mean and maximum value of the horizontal occurrence in local features,is introduced into the mapping space to optimize local features.Then,the Gaussian distribution model with hierarchical mean and covariance of pixel features is introduced to enhance feature expression.Finally,considering the influence of the size of samples on metric learning performance,the appropriate metric learning is selected by sample determination method to further improve the performance of person re-identification.Experimental results on the VIPeR,PRID450 S and CUHK01 datasets demonstrate that the proposed method is better than the traditional methods.
文摘In this study,the hourly directions of eight banking stocks in Borsa Istanbul were predicted using linear-based,deep-learning(LSTM)and ensemble learning(Light-GBM)models.These models were trained with four different feature sets and their performances were evaluated in terms of accuracy and F-measure metrics.While the first experiments directly used the own stock features as the model inputs,the second experiments utilized reduced stock features through Variational AutoEncoders(VAE).In the last experiments,in order to grasp the effects of the other banking stocks on individual stock performance,the features belonging to other stocks were also given as inputs to our models.While combining other stock features was done for both own(named as allstock_own)and VAE-reduced(named as allstock_VAE)stock features,the expanded dimensions of the feature sets were reduced by Recursive Feature Elimination.As the highest success rate increased up to 0.685 with allstock_own and LSTM with attention model,the combination of allstock_VAE and LSTM with the attention model obtained an accuracy rate of 0.675.Although the classification results achieved with both feature types was close,allstock_VAE achieved these results using nearly 16.67%less features compared to allstock_own.When all experimental results were examined,it was found out that the models trained with allstock_own and allstock_VAE achieved higher accuracy rates than those using individual stock features.It was also concluded that the results obtained with the VAE-reduced stock features were similar to those obtained by own stock features.
基金supported by the Health Commission of Zhejiang Province(WKJ-ZJ-1905 and 2018ZD007)the Key Research and Development Projects of Zhejiang Province(2018C03082)the National Natural Science Foundation of China(61625107)。
文摘Infectious keratitis is the most common condition of corneal diseases in which a pathogen grows in the cornea leading to inflammation and destruction of the corneal tissues.Infectious keratitis is a medical emergency for which a rapid and accurate diagnosis is needed to ensure prompt and precise treatment to halt the disease progression and to limit the extent of corneal damage;otherwise,it may develop a sight-threatening and even eye-globe-threatening condition.In this paper,we propose a sequentiallevel deep model to effectively discriminate infectious corneal disease via the classification of clinical images.In this approach,we devise an appropriate mechanism to preserve the spatial structures of clinical images and disentangle the informative features for clinical image classification of infectious keratitis.In a comparison,the performance of the proposed sequential-level deep model achieved 80%diagnostic accuracy,far better than the 49.27%±11.5%diagnostic accuracy achieved by 421 ophthalmologists over 120 test images.
文摘In order to explore the structural features of neural networks and the ap-proaches to local interconnection,the geometrical structural information is introduced tothe Hopfield neural network model which is applied to associative memory.The dynamicsof the recalling is studied theoretically and cxpcrimcntally.The rcsults show that the geo-metrical structural information is helpless to the associative memory of monolayeredneural networks,furthermore,it makes the error probability increased.If the geometricalstructural information of the stored patterns is necessary to be introduced,somc new ap-proaches have to be explored.
文摘Personality Disorders(PDs)and Anxiety Disorders(ADs)are common mental disorders.PDs are often more or less related to anxiety and ADs are affected by Personality Functioning(PF).To clarify the pathology of both ADs and PDs,along with their similarities and differences,the literature review by paired keywords search on NCBI PubMed and subsequent analysis are used.The findings support that abnormal stressors can damage the Hypothalamus-Pituitary-Adrenal(HPA)axis time by time throughout life through the epigenetic pathway,lowering down the ability of the stress system to deal with stressors.Biological basis,like the genetic issue,for PDs,is important but after-born experience also matters a lot.Adjoint stressful long-term memory may largely affect normal personality formation,contributing to some kinds of PDs.It seems that early exposure to these stressors influences PDs more,compared to ADs.More researches are needed to explore the effect on ADs from later life stress.This study partially explained the process of ADs and PDs,linked them by abnormal stressors,and emphasized the importance of focusing on the effect of stressful long-term memory formation,which is psychological,and the HPA axis disability,which is biological,on patients having these diseases,reminds psychiatrist to treat disease at the source,to lower down the potential risk of getting PDs in patients who are diagnosed with ADs,to prevent arouse of ADs in patients who are diagnosed with PDs and to combine biological treatment with psychological therapies.