Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing communities.In Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japane...Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing communities.In Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japanese Sign Language(JSL)for communication.However,existing JSL recognition systems have faced significant performance limitations due to inherent complexities.In response to these challenges,we present a novel JSL recognition system that employs a strategic fusion approach,combining joint skeleton-based handcrafted features and pixel-based deep learning features.Our system incorporates two distinct streams:the first stream extracts crucial handcrafted features,emphasizing the capture of hand and body movements within JSL gestures.Simultaneously,a deep learning-based transfer learning stream captures hierarchical representations of JSL gestures in the second stream.Then,we concatenated the critical information of the first stream and the hierarchy of the second stream features to produce the multiple levels of the fusion features,aiming to create a comprehensive representation of the JSL gestures.After reducing the dimensionality of the feature,a feature selection approach and a kernel-based support vector machine(SVM)were used for the classification.To assess the effectiveness of our approach,we conducted extensive experiments on our Lab JSL dataset and a publicly available Arabic sign language(ArSL)dataset.Our results unequivocally demonstrate that our fusion approach significantly enhances JSL recognition accuracy and robustness compared to individual feature sets or traditional recognition methods.展开更多
This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distri...This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distribution feature extraction layer in SDFEN replaces convolutional output neural networks with the spatial distribution features that focus more on inter-sample information by incorporating class center vectors.The designed hybrid loss function considers both intra-class distance and inter-class distance,thereby enhancing the similarity among samples of the same class and increasing the dissimilarity between samples of different classes during training.Consequently,this method allows unknown classes to occupy a larger space in the feature space.This reduces the possibility of overlap with known class samples and makes the boundaries between known and unknown samples more distinct.Additionally,the feature comparator threshold can be used to reject unknown samples.For signal open set recognition,seven methods,including the proposed method,are applied to two kinds of electromagnetic signal data:modulation signal and real-world emitter.The experimental results demonstrate that the proposed method outperforms the other six methods overall in a simulated open environment.Specifically,compared to the state-of-the-art Openmax method,the novel method achieves up to 8.87%and 5.25%higher micro-F-measures,respectively.展开更多
The task of food image recognition,a nuanced subset of fine-grained image recognition,grapples with substantial intra-class variation and minimal inter-class differences.These challenges are compounded by the irregula...The task of food image recognition,a nuanced subset of fine-grained image recognition,grapples with substantial intra-class variation and minimal inter-class differences.These challenges are compounded by the irregular and multi-scale nature of food images.Addressing these complexities,our study introduces an advanced model that leverages multiple attention mechanisms and multi-stage local fusion,grounded in the ConvNeXt architecture.Our model employs hybrid attention(HA)mechanisms to pinpoint critical discriminative regions within images,substantially mitigating the influence of background noise.Furthermore,it introduces a multi-stage local fusion(MSLF)module,fostering long-distance dependencies between feature maps at varying stages.This approach facilitates the assimilation of complementary features across scales,significantly bolstering the model’s capacity for feature extraction.Furthermore,we constructed a dataset named Roushi60,which consists of 60 different categories of common meat dishes.Empirical evaluation of the ETH Food-101,ChineseFoodNet,and Roushi60 datasets reveals that our model achieves recognition accuracies of 91.12%,82.86%,and 92.50%,respectively.These figures not only mark an improvement of 1.04%,3.42%,and 1.36%over the foundational ConvNeXt network but also surpass the performance of most contemporary food image recognition methods.Such advancements underscore the efficacy of our proposed model in navigating the intricate landscape of food image recognition,setting a new benchmark for the field.展开更多
With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices,crowdsensing systems in the Internet of Things(IoT)are now conducting complicated video analy...With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices,crowdsensing systems in the Internet of Things(IoT)are now conducting complicated video analysis tasks such as behaviour recognition.These applications have dramatically increased the diversity of IoT systems.Specifically,behaviour recognition in videos usually requires a combinatorial analysis of the spatial information about objects and information about their dynamic actions in the temporal dimension.Behaviour recognition may even rely more on the modeling of temporal information containing short-range and long-range motions,in contrast to computer vision tasks involving images that focus on understanding spatial information.However,current solutions fail to jointly and comprehensively analyse short-range motions between adjacent frames and long-range temporal aggregations at large scales in videos.In this paper,we propose a novel behaviour recognition method based on the integration of multigranular(IMG)motion features,which can provide support for deploying video analysis in multimedia IoT crowdsensing systems.In particular,we achieve reliable motion information modeling by integrating a channel attention-based short-term motion feature enhancement module(CSEM)and a cascaded long-term motion feature integration module(CLIM).We evaluate our model on several action recognition benchmarks,such as HMDB51,Something-Something and UCF101.The experimental results demonstrate that our approach outperforms the previous state-of-the-art methods,which confirms its effective-ness and efficiency.展开更多
Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is ext...Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER.展开更多
Machine Learning(ML)algorithms play a pivotal role in Speech Emotion Recognition(SER),although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state.The examination of the emotiona...Machine Learning(ML)algorithms play a pivotal role in Speech Emotion Recognition(SER),although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state.The examination of the emotional states of speakers holds significant importance in a range of real-time applications,including but not limited to virtual reality,human-robot interaction,emergency centers,and human behavior assessment.Accurately identifying emotions in the SER process relies on extracting relevant information from audio inputs.Previous studies on SER have predominantly utilized short-time characteristics such as Mel Frequency Cepstral Coefficients(MFCCs)due to their ability to capture the periodic nature of audio signals effectively.Although these traits may improve their ability to perceive and interpret emotional depictions appropriately,MFCCS has some limitations.So this study aims to tackle the aforementioned issue by systematically picking multiple audio cues,enhancing the classifier model’s efficacy in accurately discerning human emotions.The utilized dataset is taken from the EMO-DB database,preprocessing input speech is done using a 2D Convolution Neural Network(CNN)involves applying convolutional operations to spectrograms as they afford a visual representation of the way the audio signal frequency content changes over time.The next step is the spectrogram data normalization which is crucial for Neural Network(NN)training as it aids in faster convergence.Then the five auditory features MFCCs,Chroma,Mel-Spectrogram,Contrast,and Tonnetz are extracted from the spectrogram sequentially.The attitude of feature selection is to retain only dominant features by excluding the irrelevant ones.In this paper,the Sequential Forward Selection(SFS)and Sequential Backward Selection(SBS)techniques were employed for multiple audio cues features selection.Finally,the feature sets composed from the hybrid feature extraction methods are fed into the deep Bidirectional Long Short Term Memory(Bi-LSTM)network to discern emotions.Since the deep Bi-LSTM can hierarchically learn complex features and increases model capacity by achieving more robust temporal modeling,it is more effective than a shallow Bi-LSTM in capturing the intricate tones of emotional content existent in speech signals.The effectiveness and resilience of the proposed SER model were evaluated by experiments,comparing it to state-of-the-art SER techniques.The results indicated that the model achieved accuracy rates of 90.92%,93%,and 92%over the Ryerson Audio-Visual Database of Emotional Speech and Song(RAVDESS),Berlin Database of Emotional Speech(EMO-DB),and The Interactive Emotional Dyadic Motion Capture(IEMOCAP)datasets,respectively.These findings signify a prominent enhancement in the ability to emotional depictions identification in speech,showcasing the potential of the proposed model in advancing the SER field.展开更多
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p...In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.展开更多
By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Com...By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Comparison and simulation are performed on the new algorithm, the old algorithm based on single feature and the algorithm based on neural network. Results of the comparison and simulation illustrate that the new algorithm is feasible and valid.展开更多
With the aim of extracting the features of face images in face recognition, a new method of face recognition by fusing global features and local features is presented. The global features are extracted using principal...With the aim of extracting the features of face images in face recognition, a new method of face recognition by fusing global features and local features is presented. The global features are extracted using principal component analysis (PCA). Active appearance model (AAM) locates 58 facial fiducial points, from which 17 points are characterized as local features using the Gabor wavelet transform (GWT). Normalized global match degree (local match degree) can be obtained by global features (local features) of the probe image and each gallery image. After the fusion of normalized global match degree and normalized local match degree, the recognition result is the class that included the gallery image corresponding to the largest fused match degree. The method is evaluated by the recognition rates over two face image databases (AR and SJTU-IPPR). The experimental results show that the method outperforms PCA and elastic bunch graph matching (EBGM). Moreover, it is effective and robust to expression, illumination and pose variation in some degree.展开更多
To improve the recognition performance of video human actions,an approach that models the video actions in a hierarchical way is proposed. This hierarchical model summarizes the action contents with different spatio-t...To improve the recognition performance of video human actions,an approach that models the video actions in a hierarchical way is proposed. This hierarchical model summarizes the action contents with different spatio-temporal domains according to the properties of human body movement.First,the temporal gradient combined with the constraint of coherent motion pattern is utilized to extract stable and dense motion features that are viewed as point features,then the mean-shift clustering algorithm with the adaptive scale kernel is used to label these features.After pooling the features with the same label to generate part-based representation,the visual word responses within one large scale volume are collected as video object representation.On the benchmark KTH(Kungliga Tekniska H?gskolan)and UCF (University of Central Florida)-sports action datasets,the experimental results show that the proposed method enhances the representative and discriminative power of action features, and improves recognition rates.Compared with other related literature,the proposed method obtains superior performance.展开更多
Using function approximation technology and principal component analysis method, this paper presents a principal component feature to solve the time alignment problem and to simplify the structure of neural network. I...Using function approximation technology and principal component analysis method, this paper presents a principal component feature to solve the time alignment problem and to simplify the structure of neural network. Its extraction simulates the processing of speech information in human auditory system. The experimental results show that the principal component feature based recognition system outperforms the standard CDHMM and GMDS method in many aspects.展开更多
In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the gl...In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the global and the local features are combined together. Moreover, the multiple kernel learning method is adopted. The global features and each kind of local feature are respectively associated with a kernel, and all these kernels are added together with different weights to obtain a mixed kernel for nonlinear mapping. In the reproducing kernel Hilbert space, different kinds of emotional features can be easily classified. In the experiments, the popular Berlin dataset is used, and the optimal parameters of the global and the local kernels are determined by cross-validation. After computing using multiple kernel learning, the weights of all the kernels are obtained, which shows that the formant and intensity features play a key role in speech emotion recognition. The classification results show that the recognition rate is 78. 74% by using the global kernel, and it is 81.10% by using the proposed method, which demonstrates the effectiveness of the proposed method.展开更多
In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision lev...In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision level fusion is proposed. Firstly, the minimal 3D space region of human action region is detected by combining frame difference method and Vi BE algorithm, and the three-dimensional histogram of oriented gradient(HOG3D) is extracted. At the same time, the characteristics of global descriptors based on frequency domain filtering(FDF) and the local descriptors based on spatial-temporal interest points(STIP) are extracted. Principal component analysis(PCA) is implemented to reduce the dimension of the gradient histogram and the global descriptor, and bag of words(BoW) model is applied to describe the local descriptors based on STIP. Finally, a linear support vector machine(SVM) is used to create a new decision level fusion classifier. Some experiments are done to verify the performance of the multi-features, and the results show that they have good representation ability and generalization ability. Otherwise, the proposed scheme obtains very competitive results on the well-known datasets in terms of mean average precision.展开更多
Based on the features extracted from generalized autoregressive (GAR) model parameters of the received waveform, and the use of multilayer perceptron(MLP) neural network classifier, a new digital modulation recognitio...Based on the features extracted from generalized autoregressive (GAR) model parameters of the received waveform, and the use of multilayer perceptron(MLP) neural network classifier, a new digital modulation recognition method is proposed in this paper. Because of the better noise suppression ability of the GAR model and the powerful pattern classification capacity of the MLP neural network classifier, the new method can significantly improve the recognition performance in lower SNR with better robustness. To assess the performance of the new method, computer simulations are also performed.展开更多
Human Action Recognition(HAR)is an active research topic in machine learning for the last few decades.Visual surveillance,robotics,and pedestrian detection are the main applications for action recognition.Computer vis...Human Action Recognition(HAR)is an active research topic in machine learning for the last few decades.Visual surveillance,robotics,and pedestrian detection are the main applications for action recognition.Computer vision researchers have introduced many HAR techniques,but they still face challenges such as redundant features and the cost of computing.In this article,we proposed a new method for the use of deep learning for HAR.In the proposed method,video frames are initially pre-processed using a global contrast approach and later used to train a deep learning model using domain transfer learning.The Resnet-50 Pre-Trained Model is used as a deep learning model in this work.Features are extracted from two layers:Global Average Pool(GAP)and Fully Connected(FC).The features of both layers are fused by the Canonical Correlation Analysis(CCA).Then features are selected using the Shanon Entropy-based threshold function.The selected features are finally passed to multiple classifiers for final classification.Experiments are conducted on five publicly available datasets as IXMAS,UCF Sports,YouTube,UT-Interaction,and KTH.The accuracy of these data sets was 89.6%,99.7%,100%,96.7%and 96.6%,respectively.Comparison with existing techniques has shown that the proposed method provides improved accuracy for HAR.Also,the proposed method is computationally fast based on the time of execution.展开更多
Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The ma...Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The main idea of sparse representation classification is to construct a general classification scheme where the training samples of each class can be considered as the dictionary to express the query class,and the minimal reconstruction error indicates its corresponding class.However,how to learn a discriminative dictionary is still a difficult work.In this work,we make two contributions.First,we build a new and robust human action recognition framework by combining one modified sparse classification model and deep convolutional neural network(CNN)features.Secondly,we construct a novel classification model which consists of the representation-constrained term and the coefficients incoherence term.Experimental results on benchmark datasets show that our modified model can obtain competitive results in comparison to other state-of-the-art models.展开更多
Scene recognition is a popular open problem in the computer vision field.Among lots of methods proposed in recent years,Convolutional Neural Network(CNN)based approaches achieve the best performance in scene recogniti...Scene recognition is a popular open problem in the computer vision field.Among lots of methods proposed in recent years,Convolutional Neural Network(CNN)based approaches achieve the best performance in scene recognition.We propose in this paper an advanced feature fusion algorithm using Multiple Convolutional Neural Network(Multi-CNN)for scene recognition.Unlike existing works that usually use individual convolutional neural network,a fusion of multiple different convolutional neural networks is applied for scene recognition.Firstly,we split training images in two directions and apply to three deep CNN model,and then extract features from the last full-connected(FC)layer and probabilistic layer on each model.Finally,feature vectors are fused with different fusion strategies in groups forwarded into SoftMax classifier.Our proposed algorithm is evaluated on three scene datasets for scene recognition.The experimental results demonstrate the effectiveness of proposed algorithm compared with other state-of-art approaches.展开更多
This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed...This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.展开更多
A new method based on adaptive Hessian matrix threshold of finding key SRUF ( speeded up robust features) features is proposed and is applied to an unmanned vehicle for its dynamic object recognition and guided navi...A new method based on adaptive Hessian matrix threshold of finding key SRUF ( speeded up robust features) features is proposed and is applied to an unmanned vehicle for its dynamic object recognition and guided navigation. First, the object recognition algorithm based on SURF feature matching for unmanned vehicle guided navigation is introduced. Then, the standard local invariant feature extraction algorithm SRUF is analyzed, the Hessian Metrix is especially discussed, and a method of adaptive Hessian threshold is proposed which is based on correct matching point pairs threshold feedback under a close loop frame. At last, different dynamic object recognition experi- ments under different weather light conditions are discussed. The experimental result shows that the key SURF feature abstract algorithm and the dynamic object recognition method can be used for un- manned vehicle systems.展开更多
This paper proposes a novel and comprehensive method of automatic target recognition based on real ISAR images with the aim to recognize the non-cooperative ship targets. The special characteristics of the ISAR images...This paper proposes a novel and comprehensive method of automatic target recognition based on real ISAR images with the aim to recognize the non-cooperative ship targets. The special characteristics of the ISAR images for the real data compared with the simulated ISAR images are analyzed firstly. Then,the novel technique for the target recognition is proposed,and it consists of three steps,including the preprocessing,feature extraction and classification. Some segmentation and morphological methods are used in the preprocessing to obtain the clear target images. Then,six different features for the ISAR images are extracted.By estimating the features' conditional probability, the effectiveness and robustness of these features are demonstrated. Finally,Fisher's linear classifier is applied in the classification step. The results for the allfeature space are provided to illustrate the effectiveness of the proposed method.展开更多
基金supported by the Competitive Research Fund of the University of Aizu,Japan.
文摘Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing communities.In Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japanese Sign Language(JSL)for communication.However,existing JSL recognition systems have faced significant performance limitations due to inherent complexities.In response to these challenges,we present a novel JSL recognition system that employs a strategic fusion approach,combining joint skeleton-based handcrafted features and pixel-based deep learning features.Our system incorporates two distinct streams:the first stream extracts crucial handcrafted features,emphasizing the capture of hand and body movements within JSL gestures.Simultaneously,a deep learning-based transfer learning stream captures hierarchical representations of JSL gestures in the second stream.Then,we concatenated the critical information of the first stream and the hierarchy of the second stream features to produce the multiple levels of the fusion features,aiming to create a comprehensive representation of the JSL gestures.After reducing the dimensionality of the feature,a feature selection approach and a kernel-based support vector machine(SVM)were used for the classification.To assess the effectiveness of our approach,we conducted extensive experiments on our Lab JSL dataset and a publicly available Arabic sign language(ArSL)dataset.Our results unequivocally demonstrate that our fusion approach significantly enhances JSL recognition accuracy and robustness compared to individual feature sets or traditional recognition methods.
文摘This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distribution feature extraction layer in SDFEN replaces convolutional output neural networks with the spatial distribution features that focus more on inter-sample information by incorporating class center vectors.The designed hybrid loss function considers both intra-class distance and inter-class distance,thereby enhancing the similarity among samples of the same class and increasing the dissimilarity between samples of different classes during training.Consequently,this method allows unknown classes to occupy a larger space in the feature space.This reduces the possibility of overlap with known class samples and makes the boundaries between known and unknown samples more distinct.Additionally,the feature comparator threshold can be used to reject unknown samples.For signal open set recognition,seven methods,including the proposed method,are applied to two kinds of electromagnetic signal data:modulation signal and real-world emitter.The experimental results demonstrate that the proposed method outperforms the other six methods overall in a simulated open environment.Specifically,compared to the state-of-the-art Openmax method,the novel method achieves up to 8.87%and 5.25%higher micro-F-measures,respectively.
基金The support of this research was by Hubei Provincial Natural Science Foundation(2022CFB449)Science Research Foundation of Education Department of Hubei Province(B2020061),are gratefully acknowledged.
文摘The task of food image recognition,a nuanced subset of fine-grained image recognition,grapples with substantial intra-class variation and minimal inter-class differences.These challenges are compounded by the irregular and multi-scale nature of food images.Addressing these complexities,our study introduces an advanced model that leverages multiple attention mechanisms and multi-stage local fusion,grounded in the ConvNeXt architecture.Our model employs hybrid attention(HA)mechanisms to pinpoint critical discriminative regions within images,substantially mitigating the influence of background noise.Furthermore,it introduces a multi-stage local fusion(MSLF)module,fostering long-distance dependencies between feature maps at varying stages.This approach facilitates the assimilation of complementary features across scales,significantly bolstering the model’s capacity for feature extraction.Furthermore,we constructed a dataset named Roushi60,which consists of 60 different categories of common meat dishes.Empirical evaluation of the ETH Food-101,ChineseFoodNet,and Roushi60 datasets reveals that our model achieves recognition accuracies of 91.12%,82.86%,and 92.50%,respectively.These figures not only mark an improvement of 1.04%,3.42%,and 1.36%over the foundational ConvNeXt network but also surpass the performance of most contemporary food image recognition methods.Such advancements underscore the efficacy of our proposed model in navigating the intricate landscape of food image recognition,setting a new benchmark for the field.
基金supported by National Natural Science Foundation of China under grant No.62271125,No.62273071Sichuan Science and Technology Program(No.2022YFG0038,No.2021YFG0018)+1 种基金by Xinjiang Science and Technology Program(No.2022273061)by the Fundamental Research Funds for the Central Universities(No.ZYGX2020ZB034,No.ZYGX2021J019).
文摘With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices,crowdsensing systems in the Internet of Things(IoT)are now conducting complicated video analysis tasks such as behaviour recognition.These applications have dramatically increased the diversity of IoT systems.Specifically,behaviour recognition in videos usually requires a combinatorial analysis of the spatial information about objects and information about their dynamic actions in the temporal dimension.Behaviour recognition may even rely more on the modeling of temporal information containing short-range and long-range motions,in contrast to computer vision tasks involving images that focus on understanding spatial information.However,current solutions fail to jointly and comprehensively analyse short-range motions between adjacent frames and long-range temporal aggregations at large scales in videos.In this paper,we propose a novel behaviour recognition method based on the integration of multigranular(IMG)motion features,which can provide support for deploying video analysis in multimedia IoT crowdsensing systems.In particular,we achieve reliable motion information modeling by integrating a channel attention-based short-term motion feature enhancement module(CSEM)and a cascaded long-term motion feature integration module(CLIM).We evaluate our model on several action recognition benchmarks,such as HMDB51,Something-Something and UCF101.The experimental results demonstrate that our approach outperforms the previous state-of-the-art methods,which confirms its effective-ness and efficiency.
文摘Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER.
文摘Machine Learning(ML)algorithms play a pivotal role in Speech Emotion Recognition(SER),although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state.The examination of the emotional states of speakers holds significant importance in a range of real-time applications,including but not limited to virtual reality,human-robot interaction,emergency centers,and human behavior assessment.Accurately identifying emotions in the SER process relies on extracting relevant information from audio inputs.Previous studies on SER have predominantly utilized short-time characteristics such as Mel Frequency Cepstral Coefficients(MFCCs)due to their ability to capture the periodic nature of audio signals effectively.Although these traits may improve their ability to perceive and interpret emotional depictions appropriately,MFCCS has some limitations.So this study aims to tackle the aforementioned issue by systematically picking multiple audio cues,enhancing the classifier model’s efficacy in accurately discerning human emotions.The utilized dataset is taken from the EMO-DB database,preprocessing input speech is done using a 2D Convolution Neural Network(CNN)involves applying convolutional operations to spectrograms as they afford a visual representation of the way the audio signal frequency content changes over time.The next step is the spectrogram data normalization which is crucial for Neural Network(NN)training as it aids in faster convergence.Then the five auditory features MFCCs,Chroma,Mel-Spectrogram,Contrast,and Tonnetz are extracted from the spectrogram sequentially.The attitude of feature selection is to retain only dominant features by excluding the irrelevant ones.In this paper,the Sequential Forward Selection(SFS)and Sequential Backward Selection(SBS)techniques were employed for multiple audio cues features selection.Finally,the feature sets composed from the hybrid feature extraction methods are fed into the deep Bidirectional Long Short Term Memory(Bi-LSTM)network to discern emotions.Since the deep Bi-LSTM can hierarchically learn complex features and increases model capacity by achieving more robust temporal modeling,it is more effective than a shallow Bi-LSTM in capturing the intricate tones of emotional content existent in speech signals.The effectiveness and resilience of the proposed SER model were evaluated by experiments,comparing it to state-of-the-art SER techniques.The results indicated that the model achieved accuracy rates of 90.92%,93%,and 92%over the Ryerson Audio-Visual Database of Emotional Speech and Song(RAVDESS),Berlin Database of Emotional Speech(EMO-DB),and The Interactive Emotional Dyadic Motion Capture(IEMOCAP)datasets,respectively.These findings signify a prominent enhancement in the ability to emotional depictions identification in speech,showcasing the potential of the proposed model in advancing the SER field.
基金supported by Shandong Provincial Natural Science Foundation(ZR2020MF015)Aerospace Technology Group Stability Support Project(ZY0110020009).
文摘In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.
文摘By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Comparison and simulation are performed on the new algorithm, the old algorithm based on single feature and the algorithm based on neural network. Results of the comparison and simulation illustrate that the new algorithm is feasible and valid.
文摘With the aim of extracting the features of face images in face recognition, a new method of face recognition by fusing global features and local features is presented. The global features are extracted using principal component analysis (PCA). Active appearance model (AAM) locates 58 facial fiducial points, from which 17 points are characterized as local features using the Gabor wavelet transform (GWT). Normalized global match degree (local match degree) can be obtained by global features (local features) of the probe image and each gallery image. After the fusion of normalized global match degree and normalized local match degree, the recognition result is the class that included the gallery image corresponding to the largest fused match degree. The method is evaluated by the recognition rates over two face image databases (AR and SJTU-IPPR). The experimental results show that the method outperforms PCA and elastic bunch graph matching (EBGM). Moreover, it is effective and robust to expression, illumination and pose variation in some degree.
基金The National Natural Science Foundation of China(No.60971098,61201345)
文摘To improve the recognition performance of video human actions,an approach that models the video actions in a hierarchical way is proposed. This hierarchical model summarizes the action contents with different spatio-temporal domains according to the properties of human body movement.First,the temporal gradient combined with the constraint of coherent motion pattern is utilized to extract stable and dense motion features that are viewed as point features,then the mean-shift clustering algorithm with the adaptive scale kernel is used to label these features.After pooling the features with the same label to generate part-based representation,the visual word responses within one large scale volume are collected as video object representation.On the benchmark KTH(Kungliga Tekniska H?gskolan)and UCF (University of Central Florida)-sports action datasets,the experimental results show that the proposed method enhances the representative and discriminative power of action features, and improves recognition rates.Compared with other related literature,the proposed method obtains superior performance.
文摘Using function approximation technology and principal component analysis method, this paper presents a principal component feature to solve the time alignment problem and to simplify the structure of neural network. Its extraction simulates the processing of speech information in human auditory system. The experimental results show that the principal component feature based recognition system outperforms the standard CDHMM and GMDS method in many aspects.
基金The National Natural Science Foundation of China(No.61231002,61273266)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the global and the local features are combined together. Moreover, the multiple kernel learning method is adopted. The global features and each kind of local feature are respectively associated with a kernel, and all these kernels are added together with different weights to obtain a mixed kernel for nonlinear mapping. In the reproducing kernel Hilbert space, different kinds of emotional features can be easily classified. In the experiments, the popular Berlin dataset is used, and the optimal parameters of the global and the local kernels are determined by cross-validation. After computing using multiple kernel learning, the weights of all the kernels are obtained, which shows that the formant and intensity features play a key role in speech emotion recognition. The classification results show that the recognition rate is 78. 74% by using the global kernel, and it is 81.10% by using the proposed method, which demonstrates the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China under Grant No. 61503424the Research Project by The State Ethnic Affairs Commission under Grant No. 14ZYZ017+2 种基金the Jiangsu Future Networks Innovation Institute-Prospective Research Project on Future Networks under Grant No. BY2013095-2-14the Fundamental Research Funds for the Central Universities No. FRF-TP-14-046A2the first-class discipline construction transitional funds of Minzu University of China
文摘In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision level fusion is proposed. Firstly, the minimal 3D space region of human action region is detected by combining frame difference method and Vi BE algorithm, and the three-dimensional histogram of oriented gradient(HOG3D) is extracted. At the same time, the characteristics of global descriptors based on frequency domain filtering(FDF) and the local descriptors based on spatial-temporal interest points(STIP) are extracted. Principal component analysis(PCA) is implemented to reduce the dimension of the gradient histogram and the global descriptor, and bag of words(BoW) model is applied to describe the local descriptors based on STIP. Finally, a linear support vector machine(SVM) is used to create a new decision level fusion classifier. Some experiments are done to verify the performance of the multi-features, and the results show that they have good representation ability and generalization ability. Otherwise, the proposed scheme obtains very competitive results on the well-known datasets in terms of mean average precision.
文摘Based on the features extracted from generalized autoregressive (GAR) model parameters of the received waveform, and the use of multilayer perceptron(MLP) neural network classifier, a new digital modulation recognition method is proposed in this paper. Because of the better noise suppression ability of the GAR model and the powerful pattern classification capacity of the MLP neural network classifier, the new method can significantly improve the recognition performance in lower SNR with better robustness. To assess the performance of the new method, computer simulations are also performed.
基金This research was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘Human Action Recognition(HAR)is an active research topic in machine learning for the last few decades.Visual surveillance,robotics,and pedestrian detection are the main applications for action recognition.Computer vision researchers have introduced many HAR techniques,but they still face challenges such as redundant features and the cost of computing.In this article,we proposed a new method for the use of deep learning for HAR.In the proposed method,video frames are initially pre-processed using a global contrast approach and later used to train a deep learning model using domain transfer learning.The Resnet-50 Pre-Trained Model is used as a deep learning model in this work.Features are extracted from two layers:Global Average Pool(GAP)and Fully Connected(FC).The features of both layers are fused by the Canonical Correlation Analysis(CCA).Then features are selected using the Shanon Entropy-based threshold function.The selected features are finally passed to multiple classifiers for final classification.Experiments are conducted on five publicly available datasets as IXMAS,UCF Sports,YouTube,UT-Interaction,and KTH.The accuracy of these data sets was 89.6%,99.7%,100%,96.7%and 96.6%,respectively.Comparison with existing techniques has shown that the proposed method provides improved accuracy for HAR.Also,the proposed method is computationally fast based on the time of execution.
基金This research was funded by the National Natural Science Foundation of China(21878124,31771680 and 61773182).
文摘Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The main idea of sparse representation classification is to construct a general classification scheme where the training samples of each class can be considered as the dictionary to express the query class,and the minimal reconstruction error indicates its corresponding class.However,how to learn a discriminative dictionary is still a difficult work.In this work,we make two contributions.First,we build a new and robust human action recognition framework by combining one modified sparse classification model and deep convolutional neural network(CNN)features.Secondly,we construct a novel classification model which consists of the representation-constrained term and the coefficients incoherence term.Experimental results on benchmark datasets show that our modified model can obtain competitive results in comparison to other state-of-the-art models.
文摘Scene recognition is a popular open problem in the computer vision field.Among lots of methods proposed in recent years,Convolutional Neural Network(CNN)based approaches achieve the best performance in scene recognition.We propose in this paper an advanced feature fusion algorithm using Multiple Convolutional Neural Network(Multi-CNN)for scene recognition.Unlike existing works that usually use individual convolutional neural network,a fusion of multiple different convolutional neural networks is applied for scene recognition.Firstly,we split training images in two directions and apply to three deep CNN model,and then extract features from the last full-connected(FC)layer and probabilistic layer on each model.Finally,feature vectors are fused with different fusion strategies in groups forwarded into SoftMax classifier.Our proposed algorithm is evaluated on three scene datasets for scene recognition.The experimental results demonstrate the effectiveness of proposed algorithm compared with other state-of-art approaches.
基金supported by the National Natural Science Foundation of China(Grant No.61973037 and No.61673066).
文摘This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.
基金Supported by the National Natural Science Foundation of China(61103157)Beijing Municipal Education Commission Project(SQKM201311417010)
文摘A new method based on adaptive Hessian matrix threshold of finding key SRUF ( speeded up robust features) features is proposed and is applied to an unmanned vehicle for its dynamic object recognition and guided navigation. First, the object recognition algorithm based on SURF feature matching for unmanned vehicle guided navigation is introduced. Then, the standard local invariant feature extraction algorithm SRUF is analyzed, the Hessian Metrix is especially discussed, and a method of adaptive Hessian threshold is proposed which is based on correct matching point pairs threshold feedback under a close loop frame. At last, different dynamic object recognition experi- ments under different weather light conditions are discussed. The experimental result shows that the key SURF feature abstract algorithm and the dynamic object recognition method can be used for un- manned vehicle systems.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.61622107 and 61471149)
文摘This paper proposes a novel and comprehensive method of automatic target recognition based on real ISAR images with the aim to recognize the non-cooperative ship targets. The special characteristics of the ISAR images for the real data compared with the simulated ISAR images are analyzed firstly. Then,the novel technique for the target recognition is proposed,and it consists of three steps,including the preprocessing,feature extraction and classification. Some segmentation and morphological methods are used in the preprocessing to obtain the clear target images. Then,six different features for the ISAR images are extracted.By estimating the features' conditional probability, the effectiveness and robustness of these features are demonstrated. Finally,Fisher's linear classifier is applied in the classification step. The results for the allfeature space are provided to illustrate the effectiveness of the proposed method.